DEPARTMENT OF CIVIL ENGINEERING

CURRICULUM & SYLLABUS

FOR

B.Tech – CIVIL ENGINEERING

(Full Time)

(Based on Outcome Based Education)

(I- VIII Semester)

REGULATIONS – 2018, Revision 1

Bachelor of Technology in Civil Engineering (Full Time)

Sub.	Category	Name of the Course	Hou	Hours per week		
Code			L	Т	Р	
XMA101	BSC	Calculus and Linear Algebra	3	1	0	4
XES102	MAN	Environmental Sciences	2	0	0	0
XBE103	ESC	Electrical and Electronics Engineering Systems	3	1	1	5
XAP104	BSC	Applied Physics for Engineers	3	1	4	6
XEG105	ESC	Engineering Graphics	2	1	0	3
		TOTAL	13	4	6	18

SEMESTER I

SEMESTER II

Sub.	Category	Name of the Course	Hou	Hours per week		
Code			L	Т	Р	
XMA201	BSC	Calculus, Ordinary Differential Equations and Complex Variables	3	1	0	4
XCP202	ESC	Programming for Problem Solving	3	0	4	5
XGS203	HSM	English	2	0	2	3
XAC204	BSC	Applied Chemistry for Engineers	3	1	2	5
XWP205	ESC	WorkshopPractices	1	0	4	3
		TOTAL	12	2	12	20

SEMESTER III

Sub.	Category	Name of the Course	Hou	rs per v	veek	С
Code			L	Т	Р	
XCE301	BSC	Transforms and Computational Techniques	2	0	0	2
XCE302	PCC	Disaster Preparedness & Planning	1	1	0	2
XCE303	ESC	Computer Aided Civil Engineering Drawing	1	0	3	3
XCE304	ESC	Engineering Mechanics	3	1	0	4
XCE305	ESC	Energy Science and Engineering	1	1	0	2
XCE306	PCC	Surveying – I	2	0	2	3
XCE307	HSM	Introduction to Civil Engineering	3	0	0	3
XGS308	HSM	Effective Technical Communication	3	0	0	3
XCE309		In-plant Training - I	0	0	2	0
XCEM0*		Minor Course - I	1	0	1	0
		TOTAL	17	3	8	22

SEMESTER IV

Sub.	Category	Name of the Course	Hou	Hours per week			
Code			L	Т	Р		
XCE401	ESC	Mechanical Engineering	2	1	0	3	
XCE402	PCC	Concrete Technology	3	0	0	3	
XCE403	PCC	Engineering Geology	1	0	2	2	
XCE404	PCC	Mechanics of Fluids	2	0	2	3	
XCE405	PCC	Mechanics of Solids	2	0	2	3	
XUM406	HSM	Entrepreneurship Development	3	0	0	0	
XCE407	PCC	Geotechnical Engineering	2	0	2	3	
XCE408	PCC	Surveying – II	2	0	2	3	
XCE409	PCC	Materials Testing & Evaluation	2	0	2	3	
		TOTAL	19	1	12	23	

SEMESTER V

Sub.	Category	Name of the Course	Hou	rs per v	veek	С
Code			L	Т	Р	
XCE501	PCC	Mechanics of Materials	3	0	0	3
XCE502	PCC	Hydraulic Engineering	2	0	2	3
XCE503	PCC	Structural Analysis	2	1	0	3
XCE504	PCC	Hydrology & Water Resources Engineering	2	2	0	3
XCE505	PCC	Environmental Engineering	2	0	2	3
XUM506	HSM	Constitution of India	2	0	0	0
XCE507	PCC	Transportation Engineering	2	0	2	3
XCE508	PCC	Construction Engineering & Management	2	1	0	3
XMG509	HSM	Professional Practice, Law & Ethics	2	0	0	2
XCE510		In-plant Training - II	0	0	2	0
XCEM0*		Minor Course – II	1	0	1	0
		TOTAL	20	4	9	23

SEMESTER VI

Sub.	Category	Name of the Course	Hou	rs per v	veek	С
Code			L	Т	Р	
XCE601	PCC	Structural Engineering	2	1	0	3
XCE602	PCC	Engineering Economics, Estimation & Costing	2	1	4	5
XCEE**	PEC	Elective-I	3	0	0	3
XCEE**	PEC	Elective-II	3	0	0	3
XCEE**	PEC	Elective-III	3	0	0	3
XCEE**	PEC	Elective-IV	3	0	0	3
	OEC	Open Elective-I	3	0	0	3
		TOTAL	19	2	4	23

SEMESTER VII

Sub.	Category	Name of the Course	Hou	Hours per week		С
Code			L	Т	Р	
XCEE**	PEC	Elective V	3	0	0	3
XCEE**	PEC	Elective-VI	3	0	0	3
XCEE**	PEC	Elective VII	3	0	0	3
	OEC	Open Elective-II	3	0	0	3
XCE705	Project	Project Phase – I	0	0	8	4
XCE706		Inplant Training - III	0	0	4	2
XCEM0*		Minor Course – III	0	0	0	0
		TOTAL	12	0	12	18

SEMESTER VII

Sub.	Category	Name of the Course	Hou	Hours per week		
Code			L	Т	Р	
XCEE**	PEC	Elective VIII	3	0	0	3
	OE	Open Elective-III	3	0	0	3
	OE	Open Elective-IV	3	0	0	3
XCE804	Project	Project Phase– II	0	0	12	6
		TOTAL	11	0	12	15

TOTAL CREDITS - 162

PROFESSIONAL ELECTIVE COURSE TRACKS- CIVIL ENGINEERING [PEC-CE]

The following Seven Mandatory Professional Specialized Tracks identified to offer electives.

TRACK	Professional Coré Courses (PCC-CE)
I.	Transportation Engineering
II.	Structural Engineering
III.	Geotechnical Engineering
IV.	Hydraulics
V.	Structural Engineering
VI.	Hydrology & Water Resources Engineering
VII.	Construction Engineering & Management
VIII.	Environmental Engineering

TRACK I

Sub. Code	Category	Name of the Course	Hours per week			С
			L	Т	Р	
XCEE01	PEC	Pavement Design	3	0	0	3
XCEE02	PEC	Airport Planning and Design	3	0	0	3
XCEE03	PEC	Port and Harbour Engineering	3	0	0	3
XCEE04	PEC	Railway Engineering	3	0	0	3

TRACK II & TRACK V

Sub. Code	Category	Name of the Course	Hours per week			С
			L	Т	Р	
XCEE05	PEC	Advanced Structural Analysis	3	0	0	3
XCEE06	PEC	Design of Concrete Structures	3	0	0	3
XCEE07	PEC	Concrete Technology	3	0	0	3
XCEE08	PEC	Design of Steel Structures	3	0	0	3
XCEE09	PEC	Prestressed Concrete Structures	3	0	0	3
XCEE10	PEC	Bridge Engineering	3	0	0	3

TRACK III

Sub. Code	Category	Name of the Course	Hours per week			С
			L	Т	Р	
XCEE11	PEC	Foundation Engineering	3	0	0	3
XCEE12	PEC	Environmental Geotechnology	3	0	0	3
XCEE13	PEC	Geotechnical Design	3	0	0	3
XCEE14	PEC	Earthquake Engineering	3	0	0	3

TRACK IV

Sub. Code	Category	Name of the Course	Hou	rs per v	veek	C
			L	Т	Р	
XCEE15	PEC	Design of Hydraulic Structures	3	0	0	3
XCEE16	PEC	Basics of Computational Hydraulics	3	0	0	3
XCEE17	PEC	Urban Hydrology and Hydraulics	3	0	0	3
XCEE18	PEC	Groundwater Engineering	3	0	0	3

TRACK VI

Sub. Code	Category	Name of the Course	Hou	Hours per week					
			L	Т	Р				
XCEE19	PEC	Water Quality Engineering	3	0	0	3			
XCEE20	PEC	Surface Hydrology	3	0	0	3			
XCEE21	PEC	Environmental Fluid Mechanics	3	0	0	3			
XCEE22	PEC	Water Resources Field Methods	3	0	0	3			

TRACK VII

Sub.	Category	Name of the Course	Hou	C		
Code			L	Т	Р	
XCEE23	PEC	Repairs and Rehabilitation of Structures	3	0	0	3
XCEE24	PEC	Building Construction Practice	3	0	0	3
XCEE25	PEC	Construction Equipment and Automation	3	0	0	3
XCEE26	PEC	Contracts Management	3	0	0	3

TRACK VIII

Sub.	Category	Name of the Course	Hou	Hours per week					
Code			L	Т	Р				
XCEE27	PEC	Environmental Law and Policy	3	0	0	3			
XCEE28	PEC	Solid and Hazardous Waste Management	3	0	0	3			
XCEE29	PEC	Air and Noise Pollution and Control	3	0	0	3			
XCEE30	PEC	Environmental Impact Assessment	3	0	0	3			

MINOR COURSES

Sub.	Name of the Course	Hou	С		
Code		L	Т	Р	C
XCEM01	Real Estate and Valuation	1	0	0	0
XCEM02	Digital Land Surveying and Mapping	0.5	0	0.5	0
XCEM03	General repairs and Remedial Water proofing	0.25	0	0.75	0
XCEM04	Building Regulations and Approval Process	1	0	0	0
XCEM05	Computational skills for Geotechnical Applications	0.25	0	0.75	0
XCEM06	Structural Quality Assessment	0.25	0	0.75	0
XCEM07	Plumbing and Sanitary Installations	0.25	0	0.75	0
XCEM08	Survey Camp	0.25	0	0.75	0

OPEN ELECTIVE COURSES

Sub.	Name of the Course	Hou	Hours per week					
Code		L	Т	Р				
XCEOE1	Remote Sensing & GIS	3	0	0	3			
XCEOE2	Building Services	3	0	0	3			
XCEOE3	Metro Systems and Engineering	3	0	0	3			

Note: L – Lecture, T – Tutorial, P – PRACTICAL, C - Credit

	rse (r Code Name	:		MA 101	(Calaulu	a and I	incon Al						
Prei					Iathematics I vifferentiation				igeora)					
[L	Т	Р	С		С	Р	Α		L	Т	Р	H	
	3	0	0	3		2.5	0	0.5		3	0	0	3	
		Dutcon ble to	me: A	fter i	the completion	n of the c	course, s	students	Domain C or P or A	L		Lev	el	
CO	CO1 Apply orthogonal transformation to reduce quadratic form to canonical forms.									Remembering Applying				
CO2	2	Appl	y pov	ver se	ries to tests the	Cognitive	I	Apply	ing					
	sequences and series.									F	Reme	mberi	ing	
		Half 1	range	Four	ier sine and co	sine serie	es.		Psychomotor Guided Resp				sponse	
CO3		Find implio			vative of co	mposite	functio	ns and	Cognitive	I	Reme	mberi	ing	
		Euler	's the	orem	and Jacobian				Psychomotor	or Guided Response				
CO4	CO4 Explain the functions of two variables by Taylors expansion, by finding maxima and minima with and without constraints using Lagrangian Method.								Cognitive		Reme Under		U	
		Direc Diver			erivatives,	Gradient,	, Cur	l and	Affective					
										ŀ	Recei	ving		
CO					tial and Integr		us to no	tions of	Cognitive	A	Apply	ing		

UNIT 1 MATRICES

Linear Transformation - Eigen values and Eigen vectors -Properties of Eigen values and Eigen vectors - Cayley-Hamilton Theorem – Diagonalisation of Matrices – Real Matrices: Symmetric - Skew-Symmetric and Orthogonal Quadratic form – canonical form - Nature of Quadratic form and Transformation of Quadratic form to Canonical form (Orthogonal only).

UNIT 2 SEQUENCES AND SERIES

Sequences: Definition and examples-Series: Types and convergence- Series of positive terms – Tests of convergence: comparison test, Integral test and D'Alembert's ratio test-. Fourier series: Half range sine and cosine series- Parseval's Theorem.

UNIT III MULTIVARIABLE CALCULUS: PARTIAL DIFFERENTIATION

Limits and continuity –Partial differentiation – Total Derivative – Partial differentiation of Composite Functions: Change of Variables – Differentiation of an Implicit Function - Euler's Theorem- Jacobian.

UNIT IV MULTIVARIABLE CALCULUS: MAXIMA AND MINIMA AND VECTOR 15 CALCULUS

Taylor's theorem for function of Two variables- Maxima, Minima of functions of two variables: with and without constraints - Lagrange's Method of Undetermined Multipliers – Directional Derivatives - Gradient, Divergence and Curl.

15

15

UNIT V DIFFERENTIAL AND INTEGRAL CALCULUS

Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

L	Т	Р	Total	
60	15	0	75	

TEXT BOOKS

- 1. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill New Delhi, 11thReprint, 2015. (Unit-1, Unit-3 and Unit-4).
- 2. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2014. (Unit-2).
- 3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40th Edition, 2010. (Unit-5).

REFERENCES

- G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearso Reprint, 2002.
- 2. Veerarajan T., "Engineering Mathematics for first year", Tata McGraw-Hill, New Delhi, 2008.
- 3. D. Poole, "Linear Algebra: A Modern Introduction", 2nd Edition, Brooks/Cole, 2005.
- 4. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3	2			2					1		2
CO 2	3	1								1		1
CO 3	3	1								1		1
CO 4	3	2								1		1
CO 5	3	2			1					1		2
Total	15	8	0	0	3	0	0	0	0	5	0	7
Scaled Value	3	2	0	0	1	0	0	0	0	1	0	2

Note:	Total	0	1-5	6-10	11-15
	Scale	0	1	2	3
	Relation	No	Low	Medium	High

~			_										
Semes	ster		: I										
Cours	se Code		: X	XES 102									
Cours	se Nam	e	: E	NVIRONME	NTAL S	CIENC	ES						
Prere	quisite		: -										
]	LT	Р	C		С	Р	Α			L	Т	Р	H
	2 0	0	0	-	1.4	0.3	03	_		3	0	0	3
Cours be abl		ome: 1	After i	the completion	of the co	ourse, st	udents w	vill	Doma C or P o			L	evel
CO1				significance ogenic impact		al reso	urces a	ind	Cognitive			meml derst	
CO2	natu		eo l	gnificance of o bio chemical nce.	•		•		Cognitive		Un	derst	and
CO3				ets, consequences and <i>recogni</i>	-				Cognitive Affective			meml ceive	
CO4	-	ractic		socio-econo e control mea elopment.	-	•	•		Cognitive		-	derst ply	and
CO5	vario	ous	welfa	impact of pop re programs, ards environme	and	apply	concept themode		Cognitive			dersta alysis	

UNIT 1 INTRODUCTION TO ENVIRONMENTAL STUDIES AND ENERGY

Definition, scope and importance – Need for public awareness – Forest resources: Use, deforestation, case studies. – Water resources: Use and over-utilization of surface and ground water, dams-benefits and problems – Mineral resources: Uses, environmental effects of mining, case studies-iron mining(Goa), bauxite mining(Odisha) – Food resources: effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, case studies – Land resources: Land as a resource, land degradation – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles.

UNIT 2 ECOSYSTEMS AND BIODIVERSITY

Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Biogeochemical cycles – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystem (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to Biodiversity – Definition: genetic, species and ecosystem diversity - Conservation of biodiversity: Insitu and Ex-situ conservation of biodiversity.

UNIT III ENVIRONMENTAL POLLUTION

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management– Role of an individual in prevention of pollution – Pollution case studies – Disaster management: flood, earthquake, cyclone and landslide.

10

7

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

Rain water harvesting – Resettlement and rehabilitation of people; its problems and concerns, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents – Consumerism and waste products – Environment Protection Act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations – Population explosion– Environment and human health – HIV / AIDS– Role of Information Technology in Environment and human health.

L	Т	Р	Total
45	0	0	45

E RESOURCES

- 1. http://www.e-booksdirectory.com/details.php?ebook=10526
- 2. https://www.free-ebooks.net/ebook/Introduction-to-Environmental-Science
- 3. https://www.free-ebooks.net/ebook/What-is-Biodiversity
- 4. https://www.learner.org/courses/envsci/unit/unit_vis.php?unit=4
- 5. http://bookboon.com/en/pollution-prevention-and-control-ebook

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3											1
CO 2	2					2	1			1		1
CO 3	2	1	3			3	1		2	1		1
CO 4	1	1	2			3	2	3				1
CO 5	2	1	1			3						1
Total	10	3	6	0	0	11	4	3	2	2	0	5
Scaled Value	2	1	2	0	0	3	1	1	1	1	0	1

Mapping of CO with GA's

Note:	Total	0	1-5	6-10	11 - 15
	Scale	0	1	2	3
	Relation	No	Low	Medium	High

Semest	er :	I												
Course		- XBE103												
				ТЕСТІ		ENC	NEED		e veu		7			
	Course Name : ELECTRICAL AND ELECTRONICS ENGINEERING SYSTEMS Prerequisite : PHYSICS													
Prereq														
L	T P C		С	Р	Α			L	Т	Р	H			
3	1 1 5		3	1	0			3	2	2	7			
Course be able	Outcome: After to		Doma C or P o			Le	evel							
CO1	CO1 Define, Relate, the fundamentals of electrical parameters Cognitive Ren													
	and build and explain AC, DC circuits by Using Psychomotor Understand													
	measuring devices Mechanismset													
CO2	Define and E	<i>xplain</i> the of c	peration	n of D	C and A	AC C	ognitive		Re	meml	ber			
	machines.	-					C		Un	derst	and			
CO3	Recall, Illusti	rate, various se	micondu	ictor De	evices a	nd C	ognitive		Re	meml	ber			
	• •	tions and disp		-	ut outp	out P	sychomo	otor	Un	dersta	and			
	characteristics	of basic semicor	nductor of	devices.			-		Me	chan	ism			
CO4	Relate Explai	<i>n</i> , the number	systems	s and lo	ogic gate	es. C	ognitive		Re	meml	ber			
		different digital					sychomo	otor	Un	dersta	and			
							-		Org	ginati	on			
CO5	Label, Outlin	e different typ	es of m	icroproc	essors a	nd C	ognitive			meml				
	their application	• •		1			C		Un	derst	and			

UNIT 1	FUNDAMENTAL OF DC AND AC CIRCUITS, MEASUREMENTS	9
	Fundamentals of DC– Ohm's Law – Kirchoff's Laws - Sources - Voltage and Curr relations –Star/Delta Transformation - Fundamentals of AC – Average Value, RI Value, Form Factor - AC power and Power Factor, Phasor Representation of sinusoi quantities - Simple Series, Parallel, Series Parallel Circuit - Operating Principles Moving coil and Moving Iron Instruments (Ammeter, Voltmeter) and Dynamometer ty meters (Watt meter and Energy meter).	MS dal of
UNIT 2	UNIT II – ELECTRICAL MACHINES	9
	Construction, Principle of Operation, Basic Equations, Types and Application of DC Generators, DC motors - Basics of Single Phase Induction Motor and Three Phase Induction Motor- Construction, Principle of Operation of Single Phase Transformer, Three phase transformers, Auto transformer.	
UNIT III	UNIT III – SEMICONDUCTOR DEVICES	9
	Classification of Semiconductors, Construction, Operation and Characteristics: PN Junction Diode – Zener Diode, PNP, NPN Transistors, Field Effect Transistors and Silicon Controlled Rectifier – Applications.	
UNIT IV	Junction Diode – Zener Diode, PNP, NPN Transistors, Field Effect Transistors and	9
UNIT IV	Junction Diode – Zener Diode, PNP, NPN Transistors, Field Effect Transistors and Silicon Controlled Rectifier – Applications.	9
UNIT IV UNIT V	 Junction Diode – Zener Diode, PNP, NPN Transistors, Field Effect Transistors and Silicon Controlled Rectifier – Applications. UNIT IV – DIGITAL ELECTRONICS Basic of Concepts of Number Systems, Logic Gates, Boolean Algebra, Adders, Subractors, multiplexer, demultiplexer, encoder, decoder, Flipflops, Up/Down counters 	9

PRACTICAL

- 1. Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies.
- 2. Study of Active and Passive elements Resistors, Inductors and Capacitors, Bread Board.
- 3. Verification of AC Voltage, Current and Power in Series and Parallel connection.
- 4. Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter.
- 5. Fluorescent lamp connection with choke.
- 6. Staircase Wiring.
- 7. Forward and Reverse bias characteristics of PN junction diode.
- 8. Forward and Reverse bias characteristics of zener diode.
- 9. Input and Output Characteristics of NPN transistor.
- 10. Construction and verification of simple Logic Gates.
- 11. Construction and verification of adders.
- 12. Construction and verification of subtractor.

L	Т	Р	Total
45	30	30	105

TEXT BOOKS

- 1. Metha V.K., 2008. Principles of Electronics. Chand and Company.
- 2. Malvino, A. P., 2006. Electronics Principles. 7th ed. New Delhi: Tata McGraw-Hill.
- 3. Rajakamal, 2007. Digital System-Principle & Design. 2nd ed. Pearson education.
- 4. Morris Mano, 1999. Digital Design. Prentice Hall of India.
- 5. Ramesh, S. Gaonkar, 2000. Microprocessor Architecture, Programming and its Applications with the 8085. 4th ed. India: Penram International Publications.

REFERENCE BOOKS:

- 1. Corton, H., 2004. Electrical Technology. CBS Publishers & Distributors.
- 2. Syed, A. Nasar, 1998, Electrical Circuits. Schaum Series.
- 3. Jacob Millman and Christos, C. Halkias, 1967. Electronics Devices.New Delhi: McGraw-Hill.
- Millman, J. andHalkias, C. C., 1972. Integrated Electronics: Analog and Digital Circuits and Systems. Tokyo: McGraw-Hill, Kogakusha Ltd.
- 5. Mohammed Rafiquzzaman, 1999. Microprocessors Theory and Applications: Intel and Motorola. Prentice Hall International.

E-REFERENCES:

- 1. NTPEL, Basic Electrical Technology (Web Course), Prof. N. K. De, Prof. T. K. Bhattacharya and Prof. G. D. Roy, IIT Kharagpur.
- 2. Prof.L.Umanand, http://freevideolectures.com/Course/2335/Basic-Electrical-Technology#, IISc Bangalore.
- 3. http://nptel.ac.in/Onlinecourses/Nagendra/, Dr.NagendraKrishnapura, IIT Madras.
- 4. Dr.LUmanand , http://www.nptelvideos.in/2012/11/basic-electrical-technology.html, IISC Bangalore

	P01	P02	PO 3	P0 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	3	3	1	1	1	1			1	1	1	3	3	1
CO 2	3	3	1	1	1	1			1	1	1	3	3	1
CO 3	2	2	2	1	2	2	1	1	1	1	1	2	2	2
CO 4	2	2	1	1	1	1	1	1	1	1	1	2	2	1
CO 5	2	2	1	1	1	1	1	1	1	1	1	2	2	1
Total	12	12	6	5	6	6	3	3	5	5	5	12	12	6
Scaled Value	3	3	2	1	2	2	1	1	1	1	1	3	3	2

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High

Course Course	Semester : I Course Code : XAP 104 Course Name : APPLIED PHYSICS FOR ENGINEERS Prerequisite : Basic Physics in HSC level												
L		P	C		С	Р	Α			L	Т	Р	Н
3	1	2	6		2.8	0.8	0.4			3	1	3	7
	Course Outcome: After the completion of the course, students will Domain Level be able to C or P or A												
CO1	<i>Identify</i> the basics of mechanics, <i>explain</i> the principles Cognitive of elasticity and <i>determine</i> its significance in engineering Psychomotor Systems and technological advances.												
CO2	electi	omag	gnetic	ws of electros induction; electromagnetic	use a	nd loc	<i>ate</i> ba	sic	Cognitive Psychomo Affective		An Me	meml alyze chan sponc	, ism
CO3	meas	urem	ent a	e fundamental nd <i>describe</i> th arious lasers an	ne work	ing prin			Cognitive Psychomo Affective		Ap Me	dersta ply chan ceive	ism
CO4	Analyse energy bands in solids, discuss and use physics Cognitive principles of latest technology using semiconductor devices. Cognitive Psychomotor Affective Mechanism Receive												
CO5		-		vledge on pa ation for simpl		•	and <i>sol</i>	lve	Cognitive			dersta ply	and,

UNIT 1 MECHANICS OF SOLIDS

Mechanics: Force - Newton's laws of motion - work and energy - impulse and momentum - torque - law of conservation of energy and momentum - Friction.

Elasticity: Stress - Strain - Hooke's law - Stress strain diagram - Classification of elastic modulus - Moment, couple and torque - Torsion pendulum - Applications of torsion pendulum - Bending of beams - Experimental determination of Young's modulus: Uniform bending and non-uniform bending.

UNIT 2 ELECTROMAGNETIC THEORY

Laws of electrostatics - Electrostatic field and potential of a dipole; Dielectric Polarisation, Dielectric constant, internal field - ClausiusMossotti Equation - Laws of magnetism - Ampere's Faraday's law; Lenz's law - Maxwell's equation - Plane electromagnetic waves; their transverse nature - expression for plane, circularly and elliptically polarized light - quarter and half wave plates - production and detection of plane, circularly and elliptically polarized light.

UNIT III OPTICS, LASERS AND FIBRE OPTICS

Optics: Dispersion- Optical instrument: Spectrometer - Determination of refractive index and dispersive power of a prism- Interference of light in thin films: air wedge - Diffraction: grating.

9

9

LASER: Introduction - Population inversion -Pumping - Laser action - Nd-YAG laser - CO_2 laser - Applications

Fibre Optics: Principle and propagation of light in optical fibre - Numerical aperture and acceptance angle - Types of optical fibre - Fibre optic communication system (Block diagram).

UNIT IV SEMICONDUCTOR PHYSICS

Semiconductors: Energy bands in solids - Energy band diagram of good conductors, insulators and semiconductors - Concept of Fermi level - Intrinsic semiconductors - Concept of holes - doping - Extrinsic semiconductors - P type and N type semiconductors - Hall effect.

Diodes and Transistors: P-N junction diode - Forward bias and reverse bias - Rectification action of diode - Working of full wave rectifier using P N junction diodes - PNP and NPN transistors - Three different configurations - Advantages of common emitter configuration - working of NPN transistor as an amplifier in common emitter configuration.

UNIT V QUANTUM PHYSICS

Introduction to quantum physics, black body radiation, Compton effect, de Broglie hypothesis, wave – particle duality, uncertainty principle, Schrodinger wave equation (Time dependent and Time independent), particle in a box, Extension to three dimension - Degeneracy.

TEXT BOOKS

- 1. Gaur R. K. and Gupta S. L., "Engineering Physics", DhanpatRai Publications, 2009.
- Avadhanulu M. N. "Engineering Physics" (Volume I and II), S. Chand & Company Ltd., New Delhi, 2010

REFERENCE BOOKS:

- 1. Palanisamy P. K., "Engineering Physics", Scitech Publications (India) Pvt. Ltd, Chennai.
- 2. Arumugam M., "Engineering Physics" (Volume I and II), Anuradha Publishers, 2010.
- 3. Senthil Kumar G., " Engineering Physics", 2nd Enlarged Revised Edition, VRB Publishers, Chennai, 2011.
- 4. Mani P., "Engineering Physics", Dhanam Publications, Chennai, 2007.

E-REFERENCES:

1. NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

PRACTICAL

- 1. Torsional Pendulum determination of moment of inertia and rigidity modulus of the given material of the wire.
- 2. Uniform Bending Determination of the Young's Modulus of the material of the beam.
- 3. Non-Uniform Bending Determination of the Young's Modulus of the material of the beam.
- 4. Meter Bridge Determination of specific resistance of the material of the wire.
- 5. Spectrometer Determination of dispersive power of the give prism.
- 6. Spectrometer Determination of wavelength of various colours in Hg source using grating.

30

9

- 7. Air wedge Determination of thickness of a given thin wire.
- 8. Laser Determination of wavelength of given laser source and size of the given micro particle using Laser grating.
- 9. Post office Box Determination of band gap of a given semiconductor.
- 10. PN Junction Diode Determination of V-I characteristics of the given diode.

REFERENCE BOOKS:

- 1. Samir Kumar Ghosh, "A text book of Advanced PRACTICAL Physics", New Central Agency (P) Ltd, 2008.
- 2. Arora C.L., "PRACTICAL Physics", S. Chand & Company Ltd., New Delhi, 2013.
- 3. UmayalSundari AR., "Applied Physics Laboratory Manual", PMU Press, Thanjavur, 2012

L	Т	Р	Total
45	15	30	90

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	3	2	2	2	1	-	-	-	1	-	-	1		
CO 2	3		1		1	-	-	-		-	-	1		
CO 3	3	2	2	2	1	-	-	-	1	-	-	1		
CO 4	3	2	2	2	1	-	-	-	1	-	-	1		
CO 5	3		2			-	-	-		-	-	1		
Total	15	6	9	6	4				3			5		
Scaled Value	3	2	2	2	1				1			1		

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

a .			Ŧ											
Semest		:	: I											
Course				EG105										
Course	e Name	: :	: E	NGINEERINO	G GRAI	PHICS	AND DI	ESIGN	I					
Prereq	uisite	:	:	-									_	
L	, T	Р	С		С	Р	Α			L	Т	Р	Н	
2	0	1	3		1.75	1	0.25			2	0	2	4	
Course be able		Dutcome: After the completion of the course, students will Domain o C or P or A									Level			
C01		Apply the national and international standards, constructCognitive,Applying,and practice various curvesPsychomotorGuided responseAffectiveAffectiveResponds toPhenomenaPhenomena												
CO2	Interpret, construct and practice orthographic projectionsCognitiveUnderstanding,of points, straight lines and planes.PsychomotorMechanismAffectiveResponds toPhenomena													
CO3	Construct Sketch and Practice projection of solids in various positions and true shape of sectioned solids.Cognitive Psychomotor R AffectiveA C R 								Co Re Re	plyin mple: spons sponc enom	x Ove e ls to	r		
CO4	Interpret, Sketch and Practice the development of lateral surfaces of simple and truncated solids, intersection of solids. Cognitive Psychomotor Affective Response Responds to Phenomena													
CO1	Construct sketch and practice isometric and perspective views of simple and truncated solids.Cognitive Psychomotor AffectiveApplying Complex Over Response Responds to Phenomena													

UNIT 1 INTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND 6+6 CONSTRUCTION OF PLANE CURVE

Importance of graphics in engineering applications – use of drafting instruments – BIS specifications and conventions as per SP 46-2003.

Pictorial representation of engineering objects – representation of three dimensional objects in two dimensional media – need for multiple views – developing visualization skills through free hand sketching of three dimensional objects.

Polygons & curves used in engineering practice – methods of construction – construction of ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves – construction – drawing of tangents to the above curves.

UNIT 2 PROJECTION OF POINTS, LINES AND PLANE SURFACES

6+6

General principles of orthographic projection – first angle projection – layout of views – projections of points, straight lines located in the first quadrant – determination of true lengths of lines and their inclinations to the planes of projection – traces – projection of polygonal surfaces and circular lamina inclined to both the planes of projection.

UNIT III PROJECTION OF SOLIDS AND SECTIONS OF SOLIDS

Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to one plane of projection – change of position & auxiliary projection methods – sectioning of above solids in simple vertical positions by cutting plane inclined to one reference plane and perpendicular to the other and above solids in inclined position with cutting planes parallel to one reference plane – true shapes of sections.

UNIT IVDEVELOPMENT OF SURFACES AND INTERSECTION OF SOLIDS6+6

Need for development of surfaces – development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders and cones – development of lateral surfaces of the above solids with square and circular cutouts perpendicular to their axes – intersection of solids and curves of intersection –prism with cylinder, cylinder & cylinder, cone & cylinder with normal intersection of axes and with no offset.

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS

Principles of isometric projection – isometric scale – isometric projections of simple solids, truncated prisms, pyramids, cylinders and cones – principles of perspective projections – projection of prisms, pyramids and cylinders by visual ray and vanishing point methods.

L	Т	Р	Total
30	0	30	60

6+6

6+6

TEXT BOOKS

- 1. Bhatt,N.D, "Engineering Drawing", Charotar Publishing House, 46th Edition-2003.
- 2. Natarajan,K.V, "A Textbook of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2006 .
- 3. Dr. P.K. Srividhya, P. Pandiyaraj, "Engineering Graphics", PMU Publications, Vallam, 2013

REFERENCE BOOKS:

- 1. Luzadder and Duff, "Fundamentals of Engineering Drawing" Prentice Hall of India PvtLtd, XI Edition 2001.
- 2. Venugopal,K. and Prabhu Raja, V., "Engineering Graphics", New Age International(P) Ltd., 2008.
- 3. Gopalakrishnan.K.R,. "Engineering Drawing I & II", Subhas Publications, 1998.
- 4. Shah, M.B and Rana, B.C., "Engineering Drawing", Pearson Education, 2005.

E-REFERENCES:

- 1. http://periyarnet/Econtent
- 2. http://nptel.ac.in/courses/112103019/

			1	1			1					1		
	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	3	3	3	2	3	2	3	1	1	2	3	3	3	-
CO 2	3	3	3	1	3	1	3	1	1	1	2	3	3	-
CO 3	3	3	3	1	3	1	3	1	1	1	2	3	3	-
CO 4	3	3	3	1	3	1	3	1	1	1	2	3	3	-
CO 5	3	3	3	1	3	1	3	1	1	1	2	3	3	-
Total	15	15	15	6	15	6	15	5	5	6	11	3	3	-
Scaled Value	3	3	3	2	3	2	3	1	1	2	3	3	3	-

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sem	ester	ſ	:	: II										
Cou	rse (Code	:	: X	MA201									
Cou	rse N	rse Name : CALCULUS, ORDINARY DIFFERENTIAL EQUATIONS AND COMPLEX VARIABLE												
Prei	equi	isite	:	: M	lathematics I (Calculu	is and I	Linear A	lgeb	ora)				
	L	Т	Р	C		С	Р	Α			L	Т	Р	Н
	3	1	0	4		3	0.5	0.5			3	1	0	4
	rse C ble to	Dutcome: After the completion of the course, students will o								Doma C or P o			Le	evel
CO		Find double and triple integrals and to find line, surfaceCognitiveApplyingand volume of an integral by Applying Greens, GaussRememberdivergence and Stokes theorem.Remember									•			
CO2					r differential e ole for p, y, x a	-		• •	bes	Cognitive		Ар	plyin	g
CO3					rder ordinary ents using vari		-	ations w	ith	Cognitive		Ар	plyin	g
CO4			onic i ing	functi of	ns to verify and ons and harmo translation	onic con		Conform	nal	Cognitive		Ap Gu	plyin ided	-
										Psychomo	otor	Re	spons	e
CO		Apply Cauchy residue theorem to evaluate contour integrals involving sine and cosine function and to state Cauchy integral formula, Liouvilles theorem. Taylor's series, zeros of analytic functions, singularities, Laurent's series. Affective											plyin ceivir	-
COI	IIRS	E CO	NTF	NT										-

MULTIVARIABLE CALCULUS (INTEGRATION) 12	2
double integrals - Change of variables (Cartesian to polar) - Triple integrals (Cartesian)),
FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS12	2
ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDERS 12	2
	Multiple Integration: Double integrals (Cartesian) - change of order of integration in double integrals - Change of variables (Cartesian to polar) - Triple integrals (Cartesian) Scalar line integrals - vector line integrals - scalar surface integrals - vector surface integrals - Theorems of Green, Gauss and Stokes. FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS 12 Exact - linear and Bernoulli's equations - Euler's equations - Equations not of first degree equations solvable for p - equations solvable for y- equations solvable for x and Clairaut's type. 12 ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDERS 12 Second order linear differential equations with variable coefficients- method of variation of parameters - Cauchy-Euler equation- Power series solutions- Legendre polynomials 12

UNIT IVCOMPLEX VARIABLE - DIFFERENTIATION12Differentiation-Cauchy-Riemann equations- analytic functions-harmonic functions-
finding harmonic conjugate- elementary analytic functions (exponential, trigonometric,
logarithm) and their properties- Conformal mappings- Mobius transformations and their
properties.

UNIT V COMPLEX VARIABLE – INTEGRATION

Contour integrals - Cauchy-Goursat theorem (without proof) - Cauchy Integral formula (without proof)-Liouville's theorem (without proof)- Taylor's series- zeros of analytic functions- singularities- Laurent's series – Residues- Cauchy Residue theorem (without proof)- Evaluation of definite integral involving sine and cosine- Evaluation of certain improper integrals using the Bromwich contour.

L	Т	Р	Total
45	15	0	60

TEXT BOOKS

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40thth Edition, 2008.

REFERENCE BOOKS:

- 1. G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson, Reprint, 2002.
- 2. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.
- 3. W. E. Boyce and R. C. DiPrima, "Elementary Differential Equations and Boundary Value Problems", 9thEdn. Wiley India, 2009.
- 4. S. L. Ross, "Differential Equations", 3rd Ed., Wiley India, 1984.
- 5. E. A. Coddington, "An Introduction to Ordinary Differential Equations", Prentice Hall India, 1995.
- 6. E. L. Ince, "Ordinary Differential Equations", Dover Publications, 1958.
- 7. J. W. Brown and R. V. Churchill, "Complex Variables and Applications", 7th Ed., McGraw Hill, 2004.
- 8. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2008.

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3	2			2					1		2
CO 2	3	1								1		1
CO 3	3	1								1		1
CO 4	3	2								1		1
CO 5	3	2			1					1		2
Total	15	8	0	0	3	0	0	0	0	5	0	7
Scaled Value	3	2	0	0	1	0	0	0	0	1	0	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semeste Course			: II : X	CP202									
Course]		:	: P	ROGRAMMI	NG FO	R PROI	BLEM S	SOL	VING				
Prerequ	-		:			[1		[1	1	
L	Т	Р	С		С	Р	Α			L	T	Р	Н
3	0	2	5		3	0.5	0.5			3	0	2	5
Course (be able t		ne: A	fter t	he completion of	vill	Doma C or P o		Level					
CO1		Define programming fundamentals and Solve simple									Remember		
	programs using I/O statements									otor	Understand Apply		
CO2	-	-		and <i>write simpl</i> arrays	e progra	<i>ams</i> usin	g contro	1	Cognitive	Remember Understand			
									Psychomo	otor	A	pply	
CO3	Exp	l <i>ain</i> a	nd wi	rite simple prog	<i>rams</i> us	ing func	tions an	d	Cognitive			nders	tand
	poin	iters							Psychomo	otor	А	pply	
CO4	Explain and write simple programs using structures and							nd	Cognitive		-	nders	
	unions								Psychomo	otor	А	pply	Analyz
CO5	<i>Explain</i> and <i>write simple programs</i> using files and <i>Bu</i> simple projects							ild	Cognitive			emen nders	
									Psychomo	motor Create			

PROGRAMMING **FUNDAMENTALS** AND INPUT 1 **OUTPUT** UNIT 1 **STATEMENTS** Theory

Introduction to components of a computer system, Program – Flowchart – Pseudo code-Software-Introduction to C language-Character set-Tokens: Identifiers, Keywords, Constants and Operators-sample program structure -Header files - Data Types-Variables- Output statements –Input statements.

9

6

9

Practical

- 1. Program to display a simple picture using dots.
- 2. Program for addition of two numbers
- 3. Program to swap two numbers
- 4. Program to solve any mathematical formula.

UNIT 2 **CONTROL STRUCTURE AND ARRAYS**

Theory

Control Structures-Conditional Control statements: Branching, Looping-Unconditional control structures: switch, break, continue, goto statements-Arrays: One Dimensional Array-Declaration-Initialization-Accessing Array arrays-Declaration Elements-Searching-Sorting-Two Dimensional Initialization- Matrix Operations - Multi Dimensional Arrays-Declaration-Initialization. Storage classes: auto-extern-static. Strings: Basic operations on strings.

Practical

- 1. Program to find greatest of 3 numbers using Branching Statements
- 2. Program to display divisible numbers between n1and n2 using looping Statement
- 3. Program to remove duplicate element in an array.
- 4. Program to perform string operations.
- 5. Performing basic sorting algorithms

UNIT III FUNCTIONS AND POINTERS

Theory

Functions: Built in functions–User Defined Functions-Parameter passing methods-Passing arrays to functions–Recursion-Programs using arrays and functions. Pointers- Pointer declaration-Address operator-Pointer expressions & pointer arithmetic-Pointers and function-Call by value-Call by Reference-Pointer to arrays-Use of Pointers inself-referential structures-Notion of linked list(no implementation).

Practical

- 1. Program to find factorial of a given number using four function types.
- 2. Programs using Recursion such as Finding Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort
- 3. Programs using Pointers

UNIT IV STRUCTURES AND UNIONS

Theory

Structures and Unions –Giving values to members-Initializing structure-Functions and structures- Passing structure to elements to functions- Passing entire function to functions- Arrays of structure –Structure within a structure and Union.

Practical

1. Program to read and display student mark sheet Structures with variables

2.Program to read and display student marks of a class using Structures with arrays

3. Program to create linked list using Structures with pointers

UNIT V	FILES		
	Theory		9
	FilemanagementinC-FileoperationfunctionsinC-Definingandopeninga	file-	

Closingafile-Thegetwandputwfunctions-Thefprintf&fscanf functions - fseek function– Files andStructures.

Practical

1. Program for copying contents of one file to another file.

2. Program usingfiles using structure with pointer

L	Т	Р	Total
45	0	30	75

9

6

6

6

TEXT BOOKS / REFERENCE

- 1. Byron Gottfried,"Programming with C", III Edition, (Indian Adapted Edition), TMH publications, 2010
- 2. Yeshwant Kanethker, "Let us C", BPB Publications, 2008
- 3. Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Pearson Education Inc. 2005
- 4. Behrouz A. Forouzan and Richard. F. Gilberg,"A Structured Programming Approach Using C", II Edition, Brooks–Cole Thomson Learning Publications, 2001
- 5. Johnson baugh R. and Kalin M., "Applications Programming in ANSIC", III Edition, Pearson Education India, 2003
- 6. E. Balaguruswamy, Programming in ANSIC, Tata McGraw-Hill

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3	2			3						2	3	2	-
CO 2	3	2			2						2	3	2	-
CO 3	2	2	1	2	2						2	2	2	-
CO 4	2	2	1	2	2						2	2	2	-
CO 5	2	2	1		2			1		2	2	2	2	-
Total	12	10	3	4	11	0	0	1		2	10	12	10	-
Scaled Value	3	2	1	1	3	0	0	1		1	2	3	2	-

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Som	emester : II													
	rse (GS203									
		Jame			NGLISH									
	requi													
	L	Т	P	C		С	P	A		L	Т	Р	H	
	2	0	1	3		2.6	0.4	0		2	0	2	4	
		outcor			he completion				vill Doma CorPe	in	Ŭ		evel	
CO	1.	Abilit	ty to r	ecall	the meaning fo	or proper	usage		Cognit	ive		Rem	ember	ſ
CO2	2	Apply	the t	echni	iques in senten	ce patter	ns		Cognit	ive		Aţ	oply	
CO3	3	Ident	<i>ify</i> the	e com	mon errors in s	entences			Cognit	ive		Rem	ember	r
CO4	1	Cons	truct	the N	ature and Style	e of sensi	ble Wri	ting	Cognit	ive		Cr	eate	
CO	5	Pract	icing	thewn	riting skills				Psychom	otor	Gu	ided	Respo	onse
CO	D6 Grasping the techniques in learning sounds and etiquettes Psychomotor Adapting													
CO	COURSE CONTENT													
UN	UNIT 1VOCABULARY BUILDING9										9			
		i	in En	glish	ot of Word For - Acquaintan form derivative	ce with	prefixes	and su	ffixes from fo	oreign	lang	uages		
UNI	T 2]	BASI	C W	RITING SKII	LLS								9
]	prope	r pun	tructures - Use ctuation - Crea - Techniques f	ting cohe	erence -	Organiz		-				
UNI	TI	[]	IDEN	TIF	YING COMM	ION ER	RORS I	N WRI	TING					9
			5		rb agreement - Prepositions –	1		0	nt - Misplaced	modi	fiers -	-		
UNI	TIV]	NAT	URE	AND STYLE	OF SEN	SIBLE	WRIT	ING					9
				-	- Defining – n and conclusi	-	ving - P	roviding	examples or	evide	nce -	Writ	ing	
UNI	IT V WRITING PRACTICES									9				
			Comp	orehei	nsion - Précis V	Vriting -	Essay V	Vriting						
UNI	T VI				OMMUNICAT									9
		(Comr	non I	Comprehensio Everyday Situa – Interviews -	tions: C	onversa	tions an				-		
		Note : This unit involves interactive practice sessions in Language Lab												

L	Т	Р	Total
45	0	30	75

TEXT BOOKS / REFERENCE

- 1. PRACTICAL English Usage. Michael Swan. OUP. 1995
- 2. Remedial English Grammar. F.T. Wood. Macmillan.2007
- 3. On Writing Well. William Zinsser. Harper Resource Book. 2001
- 4. Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006
- 5. Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011
- 6. Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press

	1	7	3	4	S	6	7	8	9	10	11	12	11	02
	P01	P02	PO	PS01	PSO2									
CO 1	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO 2	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO 3	1	0	0	0	0	0	1	0	1	0	0	0	0	0
CO 4	2	0	0	0	0	0	1	0	1	0	0	0	0	0
CO 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	7	0	0	0	0	0	6	0	4	0	0	0	0	0
Scaled Value	2	0	0	0	0	0	2	0	1	0	0	0	0	0

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester : II Course Code : XAC204 Course Name : Applied Chemistry for Engineers Prerequisite : L T P C P A L T P H T F H T F H T F H T F H T F H T F H T F													
L	T P	С		C	Р	A			L	Т	Р	H	
3	1 1	5		3.5	1.0	0.5			3	1	2	6	
	ourse Outcome: After the completion of the course, students will Domain Level e able to C or P or A												
CO1	Identify the periodic properties such as ionization energy, electron affinity, oxidation states and electro negativity.Cognitive PsychomotorRemember Perception Describe the various water quality parameters like 												
CO2	-		asure microsc ar orbitals and	.	•		of	Cognitive Psychome	Understand Set				
CO3			roperties and p and kinetic cor					Cognitive Psychomo Affective	otor	Me	ply chan ceive		
CO4			<i>rate and Discu</i> , the synthesis of	5	Cognitive Psychome Affective	otor	An Pei	meml alyze cepti sponc	on				
CO5	Apply, Ma electroma molecular technique		Cognitive Rememi Apply Psychomotor Mechan										

UNIT I PERIODIC PROPERTIES AND WATER CHEMISTRY

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries. **Water Chemistry**-Water quality parameters-Definition and explanation of hardness, determination of hardness by EDTA method-Introduction to alkalinity.

UNIT II USE OF FREE ENERGY IN CHEMICAL EQUILIBRIA

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Corrosion-Types, factors affecting corrosion rate and Control methods. Use of free energy considerations in metallurgy through Ellingham diagrams. Advantages of electroless plating, electroless plating of nickel and copper on Printed Circuit Board (PCB).

UNIT III ATOMIC AND MOLECULAR STRUCTURE

Schrodinger equation. Particle in a box solution and their applications for conjugated molecules and nanoparticles.. Molecular orbitals of diatomic molecules and plots of the multicenter orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomic molecules. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

13

Intermolecular forces and potential energy surfaces

Ionic, dipolar and Vander waals interactions. Equations of state of real gases and critical phenomena. Potential energy surfaces of H_3 , H_2F and HCN and trajectories on these surfaces

UNIT IV SPECTROSCOPIC TECHNIQUES AND APPLICATIONS

10

Principles of spectroscopy and selection rules. Electronic spectroscopychromophore, auxochromes, types of electronic transition and application. Fluorescence and its applications in medicine. Vibrational spectroscopy-types of vibrations, Instrumentation and applications. Rotational spectroscopy of diatomic molecules. Nuclear magnetic resonance spectroscopy-concept of chemical shift and applications-magnetic resonance imaging. Diffraction and scattering.

UNIT V STEREOCHEMISTRY AND ORGANIC REACTIONS

11

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

Organic reactions and synthesis of a drug molecule

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization reactions and ring opening reactions. Synthesis of a commonly used drug molecule- Aspirin and paracetamol.

TEXT BOOKS

- 1. Puri B.R. Sharma, L.R., Kalia K.K. Principles of Inorganic Chemistry, (23rd edition), New Delhi, ShobanLalNagin Chand & Co., 1993
- 2. Lee. J.D. Concise Inorganic Chemistry, UK, Black well science, 2006.
- 3. Trapp. C, Cady, M. Giunta. C, Atkins's Physical Chemistry, 10th Edition, Oxford publishers, 2014.
- 4. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan& Co. Ltd, 1983.
- Morrison R.T. and Boyd R.N. Organic Chemistry (6th edition), New York, Allyn & Bacon Ltd., 1976.
- 6. Banwell. C.N, Fundamentals of Molecular Spectroscopy, (3th Edition), McGraw-Hill Book Company, Europe 1983.
- 7. Bahl B.S. and ArunBahl, Advanced Organic Chemistry, (4th edition), S./ Chand & Company Ltd. New Delhi, 1977.
- 8. P. S. Kalsi, Stereochemistry: Conformation and mechanism, (9th Edition), New Age International Publishers, 2017.

REFERENCE BOOKS

- 1. Puri B R Sharma L R and Madan S Pathania, "Principles of Physical Chemistry", Vishal publishing Co., Edition 2004
- 2. Kuriocose, J C and Rajaram, J, "Engineering Chemistry", Volume I/II, Tata McGraw-Hill Publishing Co. Ltd. New Delhi, 2000

E-Resources – MOOC's

- 1. http://www.mooc-list.com/course/chemistry-minor-saylororg
- 2. https://www.canvas.net/courses/exploring-chemistry
- 3. http://freevideolectures.com/Course/2263/Engineering-Chemistry-I
- 4. http://freevideolectures.com/Course/3001/Chemistry-I
- 5. http://freevideolectures.com/Course/3167/Chemistry-II
- 6. http://ocw.mit.edu/courses/chemistry/

1 Determination of chlorida ion present in the motor completes Argentemetric method	CO	
1. Determination of chloride ion present in the water sample by Argentometric method.	υ	1
2. Determination of total, temporary and permanent hardness of water sample by EDTA method.	CO	1
3. Determination of cell constant and conductance of solutions.	CC)2
4. Potentiometry - determination of redox potentials and emfs.	CO	2
5. Determination of surface tension and viscosity.	CO	3
6. Adsorption of acetic acid by charcoal.	CO	3
7. Determination of the rate constant of a reaction.	CO	4
8. Estimation of iron by colorimetric method.	CO	4
9. Synthesis of a polymer/drug.	CO	5
10. Saponification/acid value of an oil.	CO	5
	P	Total
45 15	30	90

REFERENCE BOOKS

- 1. Mendham, Denney R.C,. Barnes J.D and Thomas N.J.K., "Vogel's Textbook of Quantitative Chemical Analysis", 6th Edition, Pearson Education, 2004.
- 2. Garland, C. W.; Nibler, J. W.; Shoemaker, D. P. "Experiments in Physical Chemistry", 8th Ed.; McGraw-Hill: New York, 2003.

E-Resources – MOOC's

- 1. http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques
- 2. http://freevideolectures.com/Course/2941/Chemistry-1A-General-Chemistry-Fall-2011
- 3. http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques

	P01	P02	PO 3	PO 4	PO 5	9 O	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	3	0	0	0	0	0	2	3	3	0	0	0	0	0
CO 2	2	0	0	0	0	0	1	2	2	0	0	0	0	0
CO 3	3	0	0	0	0	0	2	3	3	0	0	0	0	0
CO 4	3	0	0	0	0	0	3	3	3	0	0	0	0	0
CO 5	3	0	0	0	0	0	2	2	3	0	0	0	0	0
Total	15	0	0	0	0	0	10	13	14	0	0	0	0	0
Scaled Value	3	0	0	0	0	0	2	3	3	0	0	0	0	0

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Cou	Semester:IICourse Code:XBW205Course Name:WORKSHOP/MANUFACTURING PRACTICES													
Pre	requi	isite	:	:										
	L	Т	Р	С		С	Р	Α		L	Т	Р	H	
	1	0	2	3		1	3	0		1	0	4	5	
		Outco ble to	me: 1	After	the completion	ı of the	course,	studen	ts Domain C or P on	-		Le	vel	
CO		Sumn machi			machining metlation.	hods and	d <i>Practio</i>	ce	Cognitive Psychomore	or	Understanding Guided response			
CO		-	-		casting process, and Smithy app		-	ods and	Cognitive Psychomore	tor	Remembering Perception			
CO.				-	entry and fitting tting operations	· •	on and A	Practice	Cognitive Psychomore	tor		lying ded re	; espon	
CO		<i>Sumn</i> weldi			al joining opera	Cognitive Psychomore	tor			nding espon				
CO				· ·	ectrical and ele ate connections	and	Cognitive Understand Psychomotor Origination				U			

PRACTICA	ALS				30		
Exp.no	Title		C	o relatio	on		
1.	Introduction To Machining Process			CO1			
2.	Plain Turining Using Lathe Operation			CO1			
3.	Introduction To CNC			CO1			
4.	Demonstration Of Plain Turning Using CNC	CO1					
5.	Study Of Metal Casting Operation			CO2			
6.	Demonstration Of Moulding Process			CO2			
7.	Study Of Smithy Operation			CO2			
8.	Study Of Carpentry Tools			CO3			
9.	Half Lap Joint – Carpentry	CO3					
10.	Mortise And Tenon Joint – Carpentry			CO3			
11.	Study Of Fitting Tools			CO3			
12.	Square Fitting			CO3			
13.	Triangular Fitting			CO3			
14.	Study Of Welding Tools			CO4			
15.	Square Butt Joint - Welding			CO4			
16.	Tee Joint – Welding			CO4			
17.	Introduction To House Wiring			CO5			
18.	One Lamp Controlled By One Switch			CO5			
19.	Two Lamps Controlled By Single Switch			CO5			
20.	Staircase Wiring			CO5			
		L	Т	Р	Total		
		0	0	45	45		

TEXT BOOKS

- 1. Workshop Technology I,II,III, by S K Hajra, Choudhary and A K Chaoudhary. Media Promoters and Publishers Pvt. Ltd., Bombay
- 2. Workshop Technology by Manchanda Vol. I,II,III India Publishing House, Jalandhar.

REFERENCE BOOKS

- 1. Manual on Workshop Practice by K Venkata Reddy, KL Narayana et al; MacMillan India Ltd.
- 2. Basic Workshop Practice Manual by T Jeyapoovan; Vikas Publishing House (P) Ltd., New Delhi
- 3. Workshop Technology by B.S. Raghuwanshi, DhanpatRai and Co., New Delhi.
- 4. Workshop Technology by HS Bawa, Tata McGraw Hill Publishers, New Delhi.

E-Resources

http://nptel.ac.in/courses/112107145/

	P01	P02	PO 3	P0 4	PO 5	PO 6	P0 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	1	2	2	1	0	0	1	1	0	1	2	0	0
CO 2	2	1	2	2	1	0	0	1	1	0	1	2	0	0
CO 3	2	1	2	2	1	0	0	1	1	0	1	2	0	0
CO 4	2	1	2	2	1	0	0	1	1	0	1	2	0	0
CO 5	2	1	2	2	1	0	0	1	1	0	1	2	0	0
Total	10	5	10	10	5	0	0	5	5	0	5	10	0	0
Scaled Value	2	1	2	2	1	0	0	1	1	0	1	2	0	0

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semest	tor		: II	т										
Course				L CE301										
Course					ORMS	AND (OMPI	ΙΤΑΤΙΟ	NAL TECH	NIOL	IES			
Prereg			:							u u Q C				
Ι	-	Р	C		Γ	С	Р	Α		L	Т	Р	H	
2	2 0	0	2			2	0	0		2	0	0	2	
Course will be			After	the comp	letion	of the	course,	students	s Domai C or P or			Le	vel	
CO1	to solve ODE and PDE (simple problems). Apply													
CO2		Find the Fourier Transform and Z-transform of Cognitive Remember standard functions.												
CO3		Solve polynomial and transcendental equation using by Cognitive Apply Newton-Raphson method.												
	Find	d Interpolation with equal and unequal intervals. Psychomotor Guided Response												
CO4	Find numerical differentiation and integration by trapezoidal rule, simpson's 1/3 rd and 3/8 th rule.													
CO5	meth	nod, E	uler a	lifferentia nd modifi thod of fo	ied Eu	ler's me			Cognitive		Reme Appl		r	
COUR	RSE CO	ONTE	INT											
UNIT	Ι	TRA	NSF(ORM CA	LCUI	LUS I								6
		funct	ions. 1 em. E	Finding ir	of int	Laplace egrals b	e transfo	orm by di	rm, Laplace the form, Laplace the form, solving	ods, co	nvolu	tion		
UNIT	II	TRA	NSF(ORM CA	LCUI	LUS II								6
		Fouri applie			, Z-ti	ransform	ns: pro	operties,	methods,	invers	es ar	nd tl	neir	
UNIT	III	NUM	IERI	CAL ME	THO	DS-I								6
		Interp	oolatio oolatio	on using	g Nev	vton's	forward	l and	tions:Newton Backward d vided differe	ifferer	nce fo	ormul	lae-	
UNIT	IV	NUM	IERI	CAL ME	THO	DS-II								6
		Nume $3/8^{\text{th}}$		Differen	tiation	and Ir	ntegratio	on:Trape	zoidal rule,	simpso	on's l	/3 rd	and	
UNIT	V	NUM	IERI	CAL ME	THO	DS-III								6
			od- R						s- Euler and or solving fir				der	stal

L	Т	Р	Total
30	0	0	30

TEXT BOOKS

- 1. Grewal, B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, New Delhi (2015).
- 2. Jain M.K. , Iyengar S.R.K, Jain R.K, "Numerical Methods problems and solutions", Revised Second Edition (2007).

REFERENCE BOOKS

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.
- 2. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2010.
- 3. Grewal, B.S. and Grewal, J.S., "Numerical methods in Engineering and Science", 6th Edition, Khanna Publishers, New Delhi, (2004).
- 3. SankaraRao, K. "Numerical methods for Scientists and Engineers', 3rd Edition, Prentice Hall of India Private Ltd., New Delhi, (2007).

E-Resources – MOOC's

NPTEL: Elementary Numerical Analysis Prof. Rekha P. Kulkarni. Department of Mathematics, Indian Institute of Technology, Bombay.

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3	0	0	0	0	0	0	0	0	1	0	1
CO 2	3	0	0	0	0	0	0	0	0	1	0	1
CO 3	3	2	0	0	0	0	0	0	0	1	1	2
CO 4	3	2	0	0	1	0	0	0	0	1	1	1
CO 5	3	2	0	0	1	0	0	0	0	1	1	1
Total	15	6	0	0	2	0	0	0	0	5	3	6
Scaled Value	3	2	0	0	2	0	0	0	0	1	1	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

	lester		:	: 11											
Cou	rse (Code	:	: X	CE302										
Cou	rse l	Name	:	: D	ISASTER PR	EPARE	DNESS	& PLA	NNING						
Pre	Prerequisite :														
	L	Т	Р	С		С	Р	Α		L	Т	Р	Η		
	1	1	0	2		2	0		1	1	0	2			
		Outco ble to		After	the completion	students	Domain C or P or L	Le	vel						
CO1 To Understand basic concepts in Disaster Management									Cognitive	Cognitive Understand					
CO	2	To U	nders	stand	Definitions and	1 Termi	nologies	used in	Cognitive		Understand				
		Disas Relati			agement and aween Develop			nalyzing ers	Psychomoto	or	Guided Response				
CO	3	Abilit	ty to ı	under	stand Categorie	es of Dis	asters		Cognitive		Unde	erstan	d		
									Affective		Rece	iving			
CO	4	To U	nders	tand t	he Challenges	ers	Cognitive U			Understand					
							Affective	Receiving							
CO	5	To un	derst	and I	mpacts of Disas	sters Key		Cognitive Understand							

UNIT I INTRODUCTION

Introduction - Concepts and definitions: disaster, hazard, vulnerability, risks severity, frequency and details, capacity, impact, prevention, mitigation).

UNIT II DISASTERS

Disasters classification; natural disasters (floods, draught, cyclones, volcanoes, earthquakes, tsunami, landslides, coastal erosion, soil erosion, forest fires etc.); manmade disasters (industrial pollution, artificial flooding in urban areas, nuclear radiation, chemical spills, transportation accidents, terrorist strikes, etc.); hazard and vulnerability, profile of India, mountain and coastal areas, ecological fragility

UNIT III DISASTER IMPACTS

Disaster Impacts - Disaster impacts (environmental, physical, social, ecological, economic, political, etc.); health, psycho-social issues; demographic aspects (gender, age, special needs); hazard locations; global and national disaster trends; climate change and urban disasters.

UNIT IV DISASTER RISK REDUCTION (DRR)

Disaster Risk Reduction (DRR) - Disaster management cycle – its phases; prevention, mitigation, preparedness, relief and recovery; structural and nonstructural measures; risk analysis, vulnerability and capacity assessment; early warning systems, Post disaster environmental response (water, sanitation, food safety, waste management, disease control, security, communications); Roles and responsibilities of government, community, local institutions, NGOs and other stakeholders; Policies and legislation for disaster risk reduction, DRR programmes in India and the activities of National Disaster Management Authority 10

3

6

UNIT V DISASTERS, ENVIRONMENT AND DEVELOPMENT

Disasters, Environment and Development - Factors affecting vulnerability such as impact of developmental projects and environmental modifications (including of dams, land use changes, urbanization etc.), sustainable and environmental friendly recovery; reconstruction and development methods

L	Т	Р	Total	
15	15	0	30	

TEXT BOOKS

- 1. PradeepSahni, 2004, Disaster Risk Reduction in South Asia, Prentice Hall.
- 2. Singh B.K., 2008, Handbook of Disaster Management: Techniques & Guidelines, Rajat Publication.
- 3. Ghosh G.K., 2006, Disaster Management, APH Publishing Corporation
- Disaster Medical Systems Guidelines. Emergency Medical Services Authority, State of California, EMSA no.214, June 2003

REFERENCE BOOKS

1. Inter-Agency Standing Committee (IASC) (Feb. 2007). IASC Guidelines on Mental Health and Psychosocial Support in Emergency Settings. Geneva: IASC

E-Resources – MOOC's

- 1. http://ndma.gov.in/ (Home page of National Disaster Management Authority)
- 2. http://www.ndmindia.nic.in/ (National Disaster management in India, Ministry of Home Affais).

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1			2	1	1	2	2	3	2	1	1	1	2	2
CO 2	1	1	3	2	3	1		2		2				
CO 3					2	1	2	2	2	2				
CO 4	1	1	2	2	2	2	1	2	1	2	1	1	1	1
CO 5	2	3		2	3	2		1	1	2		2		
Total	4	5	7	7	11	8	5	10	6	9	2	4	3	3
Scaled Value	1	1	2	2	3	2	1	2	2	2	1	1	1	1

Mapping of CO with PO's

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

Semest Subjec Subjec Prereq	t Nam t Code		XC	E 303	FER AIDF		IL ENG	GINEF	CRING	DRA	WI	NG			
	L	Т	Р	С		С	Р	Α			L	Т	Р	Н	
	1	0	2	2			1 0			4	5				
				Cour	se Outcom	e:		Don	nain	Level					
CO1		-			design and	formal	Co	gniti	ve	Ur	nd				
	en	gineer	ing dra	awing			Psy	ychoi	notor	Pe	on				
CO2	Draw and interpret 2D & 3D drawings.											ve	Ur	nd	
										Psy	ychoi	notor	M	sm	
CO3	Co	mmur	nicate a	a desig	n idea/con	cept gra	phically	/ visua	ally	Co	gniti	ve	Ur	nd	
										Af	fectiv	ve	Pe	on	
CO4	Ex	amine	a desi	gn cri	tically and	with un	derstand	ling of	CAD	Psy	ychoi	notor	M	sm	
				C	2			e			fectiv		Re	sponse	e
CO5	Ge	t a De	tailed	study	of an engin	eering a	rtifact			Co	gniti	ve		oply	
COUR				J	6	0					0		I	T J	
UNIT				CTION	J										3
															e
	Introduction to concept of drawings, Interpretation of typical drawings, Planning drawings to show information concisely and comprehensively; optimal layout of drawings and Scales; Introduction to computer aided drawing, coordinate systems, reference planes.												f		

Symbols and Sign conventions: Materials, Architectural, Structural, Electrical and Plumbing symbols. Rebar drawings and structural steel fabrication and connections drawing symbols, welding symbols; dimensioning standards

UNIT II COMMANDS

Initial settings, Drawing aids, Drawing basic entities, Modify commands, Layers, Text and Dimensioning, Blocks. Drawing presentation norms and standards.

UNIT III MASONRY BONDS

English Bond and Flemish Bond - Corner wall and Cross walls - One brick wall and one and half brick wall

UNIT IV BUILDING DRAWING

Terms, Elements of planning building drawing, Methods of making line drawing and detailed drawing. Site plan, floor plan, elevation and section drawing of small residential buildings. Foundation plan. Roof drainage plans. Depicting joinery, standard fittings & fixtures, finishes.

UNIT V **PICTORIAL VIEW**

Principles of isometrics and perspective drawing. Perspective view of building. Fundamentals of Building Information Modelling (BIM)

3

3

3

PRACTICAL

- 1. Buildings with load bearing walls including details of doors and windows.
- 2. Taking standard drawings of a typical two storied building including all MEP, joinery, rebars, finishing and other details.
- 3. Reinforcement drawings for typical slabs, beams, columns and spread footings
- 4. RCC framed structures
- 5. Industrial buildings North light roof structures Trusses
- 6. Perspective view of one and two storey buildings

L	Т	Р	Н
15	0	30	45

TEXT BOOKS

- 1. Subhash C Sharma & Gurucharan Singh (2005), "Civil Engineering Drawing", Standard Publishers
- 2. Ajeet Singh (2002), "Working with AUTOCAD 2000 with updates on AUTOCAD 2001", Tata- McGraw-Hill Company Limited, New Delhi
- 3. Sham TickooSwapna D (2009), "AUTOCAD for Engineers and Designers", Pearson Education
- 4. Venugopal (2007), "Engineering Drawing and Graphics+AUTOCAD", New Age International Pvt. Ltd

REFERENCES

- 1. Corresponding set of CAD Software Theory and User Manuals.
- 2. Balagopal and Prabhu (1987), "Building Drawing and Detailing", Spades publishing KDR building, Calicut,
- 3. Malik R.S., Meo, G.S. (2009) Civil Engineering Drawing, Computech Publication Ltd New Asian
- 4. Sikka, V.B. (2013), A Course in Civil Engineering Drawing, S.K.Kataria& Sons,

	POI	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	1			3	1			2	3	1		3	2	2
CO 2				3	3	2		1	3	2	1	1	1	1
CO 3		2	1	3	1	3		3	3	1		3	2	
CO 4	1		2	3	2	3		2	1			3	1	2
CO 5		2	1	3	3	1	1	1	2	2		3	2	2
Total	2	4	4	15	10	9	1	9	12	6	1	13	8	7
Scaled Value	1	1	1	3	2	2	1	2	2	1	1	3	2	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semest	ter		:	III										
Course	e Co	de	:	X	CE304									
Course	e Na	me	:	EN	GINEERING	MECH	ANICS							
Prereq	uisi	te	:											
	L	Т	Р	С		C	Р	Α		L	Т	P	Η	
	3	1	0	4		1.5	0	1.5		3	1	0	4	
			e: Aj	fter ti	he completion	of the c	ourse, si	tudents	Domain	Domain Level				
will be	able	e to							C or P or A					
CO1		apabi	•	to	apply mathe	matics,	science	, and	Cognitive					
	en	ginee	ering				Affective	tive Receiving						
CO2		•		denti	fy, formulate,	neering	Cognitive	ι	Jnder	stand				
	pr	obler	ns						Affective	F	Receiv	ving		

- **CO3** Skill to apply modern engineering tools, techniques and resources to solve complex mechanical engineering activities with an understanding of the limitations.
- **CO4** Capacity to design and conduct experiments, as well as to analyze and interpret data
- **CO5** Ability to comprehend the thermodynamics and their corresponding processes that influence the behaviour and response of structural components

Allective	Receiving
Cognitive	Understand
Affective	Receiving
Cognitive	Understand
Affective	Receiving
Comitivo	Understand
Cognitive	Understand
Cognitive Affective	Understand Receiving
Affective Cognitive	Charlotana
Affective	Receiving

12

12

COURSE CONTENT

UNIT I INTRODUCTION TO ENGINEERING MECHANICS

Introduction - Units and Dimensions - Laws of Mechanics –Coplanar and Non coplanar Forces - Resolution and Composition of forces - Equilibrium of a particle - Equivalent systems of forces - Principle of transmissibility – single equivalent force. Free body diagram - Types of supports and their reactions - requirements of stable equilibrium – Equilibrium of Rigid bodies in two dimensions - Equilibrium of rigid bodies in three dimensions.

UNIT II CENTROID AND CENTRE OF GRAVITY&MOMENT OF INERTIA

Centroid and Centre of Gravity covering, Centroid of simple figures from first principle, centroid of composite sections; Centre of Gravity and its implications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Mass moment inertia of circular plate, Cylinder, Cone, Sphere, Hook.

UNIT IIIFRICTION,MOTION OF BODIES20Friction covering, Types of friction, Limiting friction, Laws of Friction, Static and
Dynamic Friction; Motion of Bodies, wedge friction, Introduction to Kinetics of
Rigid Bodies, Basic terms, general principles in dynamics; Types of motion,20

Rigid Bodies, Basic terms, general principles in dynamics; Types of motion, Instantaneous center of rotation in plane motion and simple problems; D'Alembert's principle and its applications in plane motion and connected bodies; Work energy principle and its application in plane motion of connected bodies; Kinetics of rigid body rotation

UNIT IV INTRODUCTION TO MECHANICAL VIBRATIONS

Introduction To Mechanical Vibrations (DOF, Frequency, Amplitude And Damping) Virtual Work and Energy Method- Virtual displacements, principle of virtual work for particle and ideal system of rigid bodies, degrees of freedom. Active force diagram, systems with friction, mechanical efficiency. Conservative forces and potential energy (Elastic and Gravitational), energy equation for equilibrium. Applications of energy method for equilibrium. Stability of equilibrium

UNIT V DYNAMICS

Review of particle dynamics- Rectilinear motion; Plane curvilinear motion (rectangular, path, and polar coordinates). 3-D curvilinear motion; Relative and constrained motion; Newton's 2nd law (rectangular, path, and polar coordinates). Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angular); Impact (Direct and oblique).

	L	Т	Р	Total	ĺ
	45	15	0	60	
TEXT BOOKS					Ì

1. Engineering Mechanics: Statics (14th Edition) by Russell C. Hibbeler, Best Sellers, 2015

- 2. Engineering Mechanics: Dynamics (14th Edition) by Russell C. Hibbeler, Best Sellers, 2015
- 3. D.S.Kumar "A text book of Engineering Mechanics" Publishers S.K.Kataria and Sons , 2012
- 4. Velusami.M.A. "Engineering Mechanics with Vector Approach": S.Chand Publishers, 2012
- 5. J. L. Meriam, L. G. Kraige "Engineering Mechanics: Dynamics", Sixth Edition 2012
- 6. R.S.Khurmi "A Textbook of Engineering Mechanics", S. Chand Publishers, 2011

REFERENCE BOOKS

- 1. Jayakumar and Kumar, Engineering Mechanics, PHI Learning Pvt Ltd, 2013
- 2. Chandramouli, Engineering Mechanics, PHI Learning Pvt Ltd, 2011
- 3. K.V.Natarajan, "Engineering Mechanics", Dhanalakshmi Publishers, Chennai, 2006.
- 4. Beer F.P and Johnson E.R., "Vector Mechanics for Engineers Statics and Dynamics", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2001.
- 5. N.Kottiswaran, "Engineering Mechanics, Statics & Dynamics", Sri Balaji Publications, 2004

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	1			3	1			2	3	1		3	2	2
CO 2				3	3	2		1	3	2	1	1	1	1
CO 3		2	1	3	1	3		3	3	1		3	2	
CO 4	1		2	3	2	3		2	1			3	1	2
CO 5		2	1	3	3	1	1	1	2	2		3	2	2
Total	2	4	4	15	10	9	1	9	12	6	1	13	8	7
Scaled Value	1	1	1	3	2	2	1	2	3	2	1	3	2	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

10

6

Т

Т

Т

Semester Course Coo Course Nat Prerequisit	: III : XCE 305 : ENERGY SCIENCE AND ENGINEERING :	
	P C P A L 0 2 1.5 0 1.5 3	T P H 1 0 4
1	0 2 1.5 0 1.5 S	1 0 4
Course Out able to	After the completion of the course, students will be Doma C or P of	
CO1	and generally <i>explain</i> the main sources of energy Cognitive their primary applications nationally and Affective nationally	
CO2	erstand effect of using these sources on the Cognitive conment and climate	e Understand
CO3	<i>ribe</i> the challenges and problems associated with Cognitive use of various energy sources, including fossil , with regard to future supply and the impact on the conment.	e Understand
CO4	and describe the primary renewable energy Cognitive and technologies.	e Understand
CO5	<i>ntify</i> energy demands and make comparisons Cognitivent of the comparison of the com	
CO6	erstand the Engineering involved in projects Cognitive	e Understand

UNIT I INTRODUCTION TO ENERGY SCIENCE

Scientific principles and historical interpretation to place energy use in the context of pressing societal, environmental and climate issues; Introduction to energy systems and resources; Introduction to Energy, sustainability & the environment

UNIT II ENERGY SOURCES

Overview of energy systems, sources, transformations, efficiency, and storage. Fossil fuels (coal, oil, oil-bearing shale and sands, coal gasification) - past, present & future, Remedies & alternatives for fossil fuels - biomass, wind, solar, nuclear, wave, tidal and hydrogen; Sustainability and environmental trade-offs of different energy systems; possibilities for energy storage or regeneration (Ex. Pumped storage hydro power projects, superconductor-based energy storages, high efficiency batteries)

UNIT III ENERGY AND ENVIRONMENT

Energy efficiency and conservation; introduction to clean energy technologies and its importance in sustainable development; Carbon footprint, energy consumption and sustainability; introduction to the economics of energy; How the economic system determines production and consumption; linkages between economic and environmental outcomes; How future energy use can be influenced by economic, environmental, trade, and research policy

5

6

UNIT IV CIVIL ENGINEERING PROJECTS

Coal mining technologies, Oil exploration offshore platforms, Underground and under-sea oil pipelines, solar chimney project, wave energy caissons, coastal installations for tidal power, wind mill towers; hydro power stations above-ground and underground along with associated dams, tunnels, penstocks, etc.; Nuclear reactor containment buildings and associated buildings, design and construction constraints and testing procedures for reactor containment buildings; Spent Nuclear fuel storage and disposal systems

UNIT V ENGINEERINGFOR ENERGY CONSERVATION

Concept of Green Building and Green Architecture; Green building concepts (Green building encompasses everything from the choice of building materials to where a building is located, how it is designed and operated); LEED ratings; Identification of energy related enterprises that represent the breath of the industry and prioritizing these as candidates; Embodied energy analysis and use as a tool for measuring sustainability. Energy Audit of Facilities and optimization of energy consumption

L	Т	Р	Total
45	15	0	60

5

TEXT BOOKS

- 1. Boyle, Godfrey (2004), Renewable Energy (2nd edition). Oxford University Press
- 2. Boyle, Godfrey, Bob Everett, and Janet Ramage (Eds.) (2004), Energy Systems and Sustainability: Power for a Sustainable Future. Oxford University Press
- 3. Schaeffer, John (2007), Real Goods Solar Living Sourcebook: The Complete Guide to Renewable Energy Technologies and Sustainable Living, Gaiam
- 4. Jean-Philippe; Zaccour, Georges (Eds.), (2005), Energy and Environment Set: Mathematics of Decision Making, Loulou, Richard; Waaub, XVIII,
- 5. Ristinen, Robert A. Kraushaar, Jack J. AKraushaar, Jack P. Ristinen, Robert A. (2006) Energy and the Environment, 2nd Edition, John Wiley

REFERENCE BOOKS

- 1. UNDP (2000), Energy and the Challenge of Sustainability, World Energy assessment
- 2. E H Thorndike (1976), Energy & Environment: A Primer for Scientists and Engineers, Addison-Wesley Publishing Company

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3	2	1	1	1		1	2	2	1	2	1	2	2
CO 2	3		3	2		1		2	2	1	3	1	2	2
CO 3	3	2	1		2	2	1	3	2	1	1	2	2	2
CO 4	2	3	2	1				2	2	1	2	1	2	2
CO 5	3	2		2	1	2		1	2	1	1	1	2	2
CO6		3	2	1		1	2	1	2	1	2	2	2	2
Total	14	12	9	7	4	6	4	11	12	6	11	8	12	12
Scaled Value	3	3	2	2	1	2	1	3	3	2	3	2	3	3
Note:	Total		()	1.	-5	6	-10		11-15				
	Scale	d value	()	1	1		2		3				
	Relat	ion	N	lo	Lo)W	Me	dium		High				

Mapping of CO with PO's

Seme	ester	•		:	III									
Cour	se (Code		:	XCE 306									
Cour	se N	Name		:	SURVEYING	- I								
Prere	equi	isite		:										
	L	Т	Р	С		С	Р	Α]	L	T	Р	Н	
	2	0	4	6		0.80	1.7	0.5		2	0	4	6	
Cours will b			me: 1	After	students	Dom C or P			Level					
CO1					nciples and fund	ctions of	various		Cogniti	ve	l	Unde	rstand	lin
		surve	ying	methe	ods			Psychon	notoi	r]	Mani	pulati	or	
CO2					hods of Levelli	ng and <i>c</i>	determin	e the	Cogniti	ve		Appl	ying	
		reduc	ed le	vels		Affective			Responding					
									Psychon	pulati	or			
CO3					thods of Contou	uring and	d Measu	<i>re</i> the	Cogniti	ve	١	Understandin		
		capac	ity of	f Rese	ervoir				Psychon	notoi	r 1	Mani	pulati	or
CO4		Desci	ribe ti	he me	ethods and <i>mea</i>	s <i>ure</i> the	angles a	ind	Cogniti	ve	1	Unde	rstand	lir
		distar	ices u	ising	Theodolite				Psychon	notoi	r]	Manipulation		
									Affectiv	ve]	Resp	onding	g
CO5					e measurement		nce and h	neights of	Cogniti	ve	I	Unde	rstanc	lir
		objects using tachometric principle							Psychon	notoi	r 1	Mani	pulati	or
									Affectiv	ve]	Resp	onding	g

UNIT I TRADITIONAL METHODS

Introduction to Plane and Geodetic Surveying, Chain surveying, Instruments used in chain surveying, Ranging and chaining lines, chaining past obstacles, Chaining on sloping ground, Corrections applied, Field book, Trapezoidal and Simpson's rule for computation of areas with irregular boundaries.

Compass Instrument, Measurement of angles and directions, Bearing, WCB & RB, Magnetic declination and its variation, Local attraction, Plotting of compass traverse, Latitude and departure

Plane Table Surveying: Principle, equipment, methods, orientation, two point and threepoint problem and their solutions, errors & precautions, advantages and disadvantages of plane tabling.

UNIT II LEVELLING

Levelling, terms and definitions, Instruments and its parts, Temporary and permanent adjustments, Reduction of level, Height of collimation and Rise and fall methods, Inverted levels, Reciprocal levelling, Longitudinal and cross sectioning, Capacity of reservoirs

UNIT III CONTOURING

Definition, Contour interval, Characteristics of contours, Types of contours, Steep slope contours, Flat terrain contours, Methods of locating contours, interpolation of contours, Contour gradient, Uses of contour maps, Definition for TIN, DTM, mass points.

09

09

UNIT IV THEODOLITE SURVEYING

Description of theodolite, Measurement of horizontal angles and vertical angles, Methods of repetition and reiteration, Problems of heights and distances by single plane and double plane method.

UNIT V TACHOMETRY

Tachometry – Tachometric systems – Determination of Instrument Constants-Problems in tachometric survey.

PRACTICAL

- 1. Chain surveying- Distance Measurements
- 2. Compass Surveying- Magnetic declination and its variation
- 3. Plane Table Surveying-Two point and three-point problem
- 4. Levelling-Height of collimation and Rise and fall methods
- 5. Levelling- Longitudinal and cross sectioning
- 6. Contouring Radial and Square
- 7. Theodolite surveying-Single plane method and double plane method.
- 8. Tachometric surveying-Determination of Instrument constants
- 9. Stadia Tachometry Staff held Vertical (Angle of Elevation and Depression)
- 10. Tangential tachometry Both angles of Elevation and Depression

L		Т	Р	Total	
45	45	15	0	60	

TEXT BOOKS

- 1. Punmia B.C. Surveying, Vols. I, II and III, Laxmi Publications, 2007
- 2. Madhu, N, Sathikumar, R and Satheesh Gobi, Advanced Surveying: Total Station, GIS and Remote Sensing, Pearson India, 2006.
- 3. Manoj, K. Arora and Badjatia, Geomatics Engineering, Nem Chand & Bros, 2011.

REFERENCE BOOKS

- 1. Chandra, A.M., Higher Surveying, Third Edition, New Age International (P) Limited, 2002.
- 2. Anji Reddy, M., Remote sensing and Geographical information system, B.S. Publications, 2001.
- 3. Arora, K.R., Surveying, Vol-I, II and III, Standard Book House, 2015.

E-Resources – MOOC's

1. NPTEL Video Lectures on Surveying

09

06 ms

												-		
	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3	3	3	3	3	3	2	3	2	2	3	3	3	2
CO 2	2	2	2	3	3	2	2	3	2	3	2	3	3	3
CO 3	3	1	2	3	3	2	1	3	2	2	2	3	3	3
CO 4	2	1	3	3	3	2	1	3	2	3	3	3	3	3
CO 5	2	1	3	3	3	2	1	3	2	3	3	3	3	3
Total	12	8	13	15	15	11	7	15	10	13	13	15	15	14
Scaled Value	3	2	3	3	3	2	2	3	2	3	3	3	3	3

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sem	leste	r		:	III											
Cou	rse	Code		:	XCE 307											
Cou	rse l	Name		:	INTRODUCT	TION T	O CIVI	L ENGI	NEERIN	NG						
Prei	requ	isite		:												
	L	Т	Р	С		С	Р	Α			L	Т	Р	Н		
	2	0	0	2		2 0 0 2										
Cou able		Outco	me: A	After	the completion	of the o	will be		omai r P oi	Level						
201					basis of enginethods.	neering,	Buildir	Cogr	itive		Understandin					
202					e fundamentals d environmenta			re, cons	truction	Cogr	itive		Un	derst	andi	
203		Under energ			advancement of	of water	& wast	e water	system,	Cogr	itive		Un	derst	andi	
C O 4					ne use of Surveying equipment and advancement Cognitive Understandition system.										andi	
205		Get a engin			l study of co	mputatio	onal me	ethods	in civil	il Cognitive Under					andiı	

Basic Understanding: Basics of Engineering and Civil Engineering; Broad disciplines of Civil Engineering; Importance of Civil Engineering, Possible scopes for a career, Professional ethics.

History of Civil engineering: Early constructions and developments over time; Ancient monuments & Modern marvels; Development of various materials of construction and methods of construction; Industrial lectures and Case studies

Overview of National Planning for Construction and Infrastructure Development: Position of construction industry vis-à-vis other industries, five year plan outlays for construction; current budgets for infrastructure works

Materials and methods of constructions: Stones, bricks, mortars, Plain, Reinforced &Prestressed Concrete, Construction Chemicals; Structural Steel, High Tensile Steel, Composites; Plastics

4

UNIT II Introduction of Architecture, Environmental and Management Studies

Fundamentals of Architecture & Town Planning: Aesthetics in Civil Engineering, Examples of great architecture, fundamentals of architectural design & town planning; Building Services; Green Buildings; Development of Smart cities

Basics of Construction Management: Temporary Structures in Construction; Construction Methods for various types of Structures; Major Construction equipment; Automation & Robotics in Construction; Modern Project management Systems; Advent of Lean Construction; Importance of Contracts Management

Environmental Engineering & Sustainability: Water treatment systems; Effluent treatment systems; Solid waste management; Recycling and Sustainability in Construction; Repairs and rehabilitation of structures

UNIT III Introduction of Geotechnical, Water resource and Ocean Engineering

Geotechnical Engineering: Basics of soil mechanics, rock mechanics and geology; various types of foundations; basics of rock mechanics &tunneling

Hydraulics, Hydrology & Water Resources Engineering: Fundamentals of fluid flow, basics of water supply systems; Underground Structures; Multipurpose reservoir projects

Ocean Engineering: Basics of Wave and Current Systems; Sediment transport systems; Ports & Harbors and other marine structures

UNIT IV Introduction of Structural Engineering, Transportation Engineering and Remote Sensing 8

Structural Engineering: Types of buildings; tall structures; various types of bridges; Water retaining structures; Other structural systems; Experimental Stress Analysis; Power plant structures;

Traffic &Transportation Engineering: Investments in transport infrastructure development in India for different modes of transport; Developments and challenges in integrated transport development in India: road, rail, port and harbor and airport sector; PPP in transport sector; Intelligent Transport Systems; Urban Public and Freight Transportation; Road Safety under heterogeneous traffic; Sustainable and resilient pavement materials, design, construction and management;

Surveying &Geomatics: Traditional surveying techniques, Total Stations, Development of Digital Terrain Models; GPS, LIDAR

UNIT V Computational Methods in Civil Engineering

Computational Methods, IT in Civil Engineering: Typical software used in Civil Engineering- Finite Element Method, Computational Fluid Dynamics; Computational Geotechnical Methods; highway design (MX), Building Information Modeling; Highlighting typical available software systems (SAP, STAAD, ABAQUS, MATLAB, ETAB, NASTRAN, NISA, MIKE 21, MODFLOW, REVIT, TEKLA, AUTOCAD,...GEOSTUDIO, EDUSHAKE, MSP, PRIMAVERA, ArcGIS, VisSIM, ...)

TUTORIALS

- 1. Develop a Strategic Plan for Civil Engineering works for next ten years based on past investments and identify one typical on-going mega project
- 2. Identify ten best civil engineering projects with high aesthetic appeal with one possible factor for each; List down the possible systems required for a typical Smart City.
- 3. List top five tunnel projects in India and their features; collect and study geotechnical investigation report of any one Metro Rail (underground) project;
- 4. Visit a construction site and make a site visit report. Collect visual representations prepared by a Total Station and LIDAR and compare; Study typical Google street map and Google Earth Map and study how each can facilitate the other
- 5. Collect the history of a major rehabilitation project and list the interesting features

L	Т	Р	Total
30	15	0	45

15

8

TEXT BOOKS

- 1. L S Blake, (1989), Civil Engineer's Reference Book.
- 2. Patil, B.S.(1974), Legal Aspects of Building and Engineering Contract.
- 3. Archer Green. (2017) An Introduction to Civil Engineering.
- 4. MeenaRao (2006), Fundamental concepts in Law of Contract, 3rd Edn. Professional Offset
- 5. Chandiramani, Neelima (2000), The Law of Contract: An Outline, 2nd Edn. Avinash Publications Mumbai

REFERENCE BOOKS

- 1. Wadhera (2004), Intellectual Property Rights, Universal Law Publishing Co.
- 2. P. S. Narayan (2000), Intellectual Property Rights, Gogia Law Agency
- 3. T. Ramappa (2010), Intellectual Property Rights Law in India, Asia Law House
- 4. Bare text (2005), Right to Information Act
- 5. O.P. Malhotra, Law of Industrial Disputes, N.M. Tripathi Publishers
- 6. K.M. Desai(1946), The Industrial Employment (Standing Orders) Act.

Mapping	of	СО	with	PO's
---------	----	----	------	------

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	0	0	1	0	1	2	0	1	3	0	0	0	0	2
CO 2	0	3	0	0	2	0	0	0	1	1	0	0	1	1
CO 3	2	0	0	0	2	0	0	2	1	2	0	0	2	2
CO 4	0	0	1	0	3	0	2	1	1	1	0	0	2	0
CO 5	2	2	0	2	0	0	0	1	0	1	0	0	1	1
Total	4	5	2	2	8	2	2	5	6	5	0	0	6	6
Scaled Value	1	1	1	1	2	1	1	1	2	1	0	0	2	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semes	ter		: П	I										
Cours	e Cod	e	: X	GS 308										
Cours	e Nan	ıe	: E	FFECTIVE	ГЕСН	NICAL		MUNI	CATIO	N				
Prerec	quisite	e	:											
L	, T	P	C		С	Р	Α			L	Т	Р	Η	1
3	0	0	3		3	0	0			3	0	0	3	1
		ome:	After	the completion	of the	course,	students	s will	Don	nain	1	1	Lev	el
be able	to								C or l	P or A	1			
CO1	Knov	<i>Identify</i> the features of a technical project report a Knowledge on the linguistic competence to write technical report								nitive		Remem		
CO2		r <i>ate</i> a pro		echnical subject	et skill a	and lang	guage sk	ill to	Cogr	nitive		Create		
CO3	soun	The learner <i>identifies</i> and absorbs the pronunciation sounds in English Language and learns how to mark stress in a word and in a sentence properly								nitive		Remembe		nbei
CO4	Conf	ïdenc	e to p	resent a project		Cognitive				nders	stand			
COUF	RSE C	ONI	TENT											

UNIT I	BASIC PRINCIPLES				10
	Definition of technical writing - language used in technic words, jargons etc	al wri	ting: t	echnic	cal
UNIT II	TECHNIQUES				10
	Description of mechanism, Description of a process, Clas and interpretation	ssifica	tions,	divisi	on
UNIT III	LETTER WRITING				10
	Formal – Informal – Four types of letter writing				
UNIT IV	REPORT/ PROJECT WRITING				15
	Layout the formats: chapters, conclusion, bibliography, and Graphics aids etc - Presentation of the written project	nexure	e and g	glossa	ry,
		L	Т	Р	Total

TEXT BOOKS

- 1. Gordon H. Mills, Technical Writing April, 1978, Oxford Univ Press
- 2. Barun K. Mitra, Effective Technical Communication: A Guide for scientists and Engineers. Author, Publication: Oxford University press. 2007

30

15

0

45

REFERENCE BOOKS

1. Clifford Whitcomb, Effective Interpersonal and Task Communication Skills for Engineers, Atlantic Publishers. 2010

		[[
	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	1	1	1			1	1			1				
CO 2	1	1	1			1	1			1				
CO 3	2	1	1			1	1			1				
CO 4	2		2			3	1			1				
Total	8	3	5	0	0	6	4	0	0	4	0	0	0	0
Scaled Value	2	1	1	0	0	2	1	0	0	1	0	0	0	0
Note:	Total		()	1	-5	6-	10	11	-15				

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sem	este	r	:	: IV	V											
Cou	rse (Code	:	: X	CE401											
Cou	rse I	Name	e :	: M	IECHAN	NICAL	ENGI	NEERI	NG							
Prei	equ	isite	:	:												
Γ	L	Т	Р	С			С	Р	Α			L	Т	Р	Н]
Ī	2	2	0	3			2.5	0.5	0.5			2	2	0	4	
Cou	rse (Jutco	me: 1	After	the com	oletion	of the	course,	students	will	Don	nain		1	Lev	el
be a	ble t	0					C or I	P or A	1							
CO 1		After completing this course, the students will be able to <i>apply</i> energy balance to systems and control volumes, in situations involving heat and work interactions														
CO2					<i>Study</i> ostances	the cl	nanges	in the	ermodyn	amic	Cogniti	ve		Unde	erstan	ding
CO3					vill be a on device		study	the per	formanc	e of	Cogniti	ve		Unde	erstan	ding
CO4					vill be al rade ener		high	Cogniti		Unde	erstan	ding				
CO		Student can <i>apply</i> the energy balance to systems operating Cognitive Understanding at different cycles.														
COI	URS	E CO	ONTE	ENT												

URSE CONTENI

UNIT I	BASIC CONCEPTS9
	Fundamentals - System & Control volume; Property, State & Process; Exact & Inexact differentials; Work - Thermodynamic definition of work; examples; Displacement work; Path dependence of displacement work and illustrations for simple processes; electrical, magnetic, gravitational, spring and shaft work.
UNIT II	LAWS OF THERMODYNAMICS 9
	Temperature, Definition of thermal equilibrium and Zeroth law; Temperature scales; Various Thermometers- Definition of heat; examples of heat/work interaction in systems- First Law for Cyclic & Non-cyclic processes; Concept of total energy E ; Demonstration that E is a property; Various modes of energy, Internal energy and Enthalpy
UNIT III	PROPERTIES OF SUBSTANCES AND STEAM TABLES 9
	Definition of Pure substance, Ideal Gases and ideal gas mixtures, Real gases and real gas mixtures, Compressibility charts- Properties of two phase systems - Const. temperature and Const. pressure heating of water; Definitions of saturated states; P-v-T surface; Use of steam tables and R134a tables; Saturation tables; Superheated tables; Identification of states &

UNIT IV FLOW PROCESS AND THERMO DYNAMIC RELATIONS

determination of properties, Mollier's chart.

First Law for Flow Processes - Derivation of general energy equation for a control volume; Steady state steady flow processes including throttling; Examples of steady flow devices; Unsteady processes; examples of steady and unsteady I law applications for system and control volume

9

Second law - Definitions of direct and reverse heat engines; Definitions of thermal efficiency and COP; Kelvin-Planck and Clausius statements; Definition of reversible process; Internal and external irreversibility; Carnot cycle; Absolute temperature scale.

UNIT V CYCLES AND PSYCHOMETRY

Thermodynamic cycles - Basic Rankine cycle; Basic Brayton cycle; Basic vapor compression cycle and comparison with Carnot cycle.

Psychrometry and Psychrometric charts, Psychrometric Processes and Refrigeration Cycles. Vapour compression and absorption Refrigeration systems

L	Т	Р	Total
30	15	0	45

TEXT BOOKS / REFERENCE BOOKS

- 1. Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., 2003, 6th Edition, *Fundamentals of Thermodynamics*, John Wiley and Sons.
- 2. Jones, J. B. and Duggan, R. E., 1996, Engineering Thermodynamics, Prentice-Hall of India
- 3. Moran, M. J. and Shapiro, H. N., 1999, *Fundamentals of Engineering Thermodynamics*, John Wiley and Sons.
- 4. Nag, P.K, 1995, Engineering Thermodynamics, Tata McGraw-Hill Publishing Co.Ltd

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 O	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	-	1	-	3	-	2	2	2	-	-	2	0	0
CO 2	3	-	-	2	3	-	1	-	1	-	-	3	0	3
CO 3	1	-	1	3	1	-	1	2	-	2	-	1	2	0
CO 4	2	-	-	1	1	-	2	1	2	2	-	1	0	0
CO 5	-	-	-	1	1	-	-	-	1	1	-	2	2	2
Total	8	-	2	7	9	-	6	5	6	5	-	9	4	5
Scaled Value	2	0	1	2	2	0	2	1	2	1	0	2	1	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sem	leste	r	: IV															
Cou	rse (Code		:	X	CE 4	02											
Cou	rse l	Name	9	:	C	ONC	CRETE	TECHN	NOLO	GY								
Pre	requi	isite		:														
	L	Т	P		С			C	Р	Α				L	Τ	P	H	
	3	0	0		3			3	0	0				3	0	0	3	
	rse (ble to		ome:	Aft	er ti	he co	ompletio	n of the	course,	students	will			nain P or ⊥	4		Lev	el
CO	1	Anal	lyse	the	pro	pert	ies of in	gredient	s of Co	ncrete		C	ognit	ive		Ana	lyse	
CO	2	Desi	gn a	a co	ncre	ete n	nix for v	arious g	rade			C	ognit	ive		Crea	ite	
CO.	3.	Asse	ss tl	he q	uali	ity o	f concre	te				C	ognit	ive		Ana	lyse	
CO	4	Iden	tify	the	caus	ses c	of distres	s in con	crete			C	ognit	ive		App	ly	
CO		Sugg						for pra	ctical p	oroblem	s in	C	ognit	ive		Ana	lyse	
CO	URS	E CC	CONTENT															
UN	IT I		CO	NC	RE	TE	INGRE	DIENT	S									9
			Arti	ifici	al a	iggre		rties –To Vater – Uses.										
UNI	IT II		CO	NC	RE	TE	MIXDE	SIGNA	ND PR	ODUC	ΓΙΟΝ	J						9
			of 1	mix	de	sign	– Wate	esign – s er binde d –ACI	r ratio	- Meth								
				dy	mix			– mixin Placing	0					-				
UNI	TII TI	I	PR	OP	ER	FIE	S OF FI	RESH A	ND HA	ARDEN	IED (C O]	NCR	ETF	C			9
			Tes Stre Flex	t Co engt xure	omp h of e, E	acti f Co ffec	ng Facto ncrete – t of age	oncrete or Test, 1 Water/(on Str and Shr	Flow T Cement ength,	able Te ratio, Stress S	st, Seg Streng Strain	greg gth Re	gatio test elatic	n, Bl for C on an	eedin omp d Y	ng, So ressio oung ²	etting on, T 's M	Time; ension,
UNI	T IV	7	DU	RA	BII	LITY	Y OF C	ONCRE	ТЕ									9
			– c reac	orro ction	osio 1 – ratu	n – Fre	Acid a eze and	- Factors attack – 1 Thaw - Distres	Sulph – Chl	ate Att oride a	ack - ttack	-Car	rbona Dura	ation bility	– A y un	Alkali der s	Ag sea v	gregate /ater –

UNIT V	SPEC	CIAL (CONC	RETI	ES AN	D CO	NCR	ETEIN	NG M	ETH	ODS				9
	High modif concre	ied co	ncrete	- Self	-comp									-	
	concre		Hot &	0		-	ed con reting,			•					
											L	Т	Р	Т	otal
											45	0	0	4	45
TEXT BOO					_						~	~			
	etty,M.S. w Delhi,		crete '	l'echno	ology:	Theor	y and	Practic	ce",7"	editi	on, S.	Chan	d& C	omp	any,
	mbhir, N		Concre	te Tec	hnolos	gv", 5 ^t	^h editi	on. Ta	ta Mc(Graw	Hill I	New I	Delhi.	2013	3.
	thakum														
REFEREN			,			0.				<u> </u>	,		,		
	ville, A.I		l Broo	kes. J.	J. "Co	ncrete	Techr	ology	". Pea	rson I	Publis	hers.	New	Delh	i.
201				,				05	,			,			,
	ndorPopo lliam Ar			ete Ma	aterials	s, 2 nd E	Edition	, Prop	erties,	Spec	ificati	ons a	nd Te	esting	g",
3. Joh 200	n Newm)3	nan,"A	dvanc	ed Co	ncrete	Techn	ology	Proces	sses"]	l st edi	tion,	Elsevi	ier Sc	eience	e,
Mapping o	f CO wit	h PO's	ŝ												
	P01	P02	PO 3	P04	PO 5	P0 6	P0 7	PO 8	PO 9	PO 10	PO 11	PO 12		IUGI	PSO2
CO 1	2	3	1			1	1		1	1		1		2	3
CO 2	2	2	3			1	1		1	1		2		3	2
CO 3	2	3	2			1	1		1	1		2		3	3
CO 4	2	3	1			1	1		1	1		1		2	2
CO 5	2	2	2			2	1		1	3		1		2	2
Total	10	13	9			6	5		5	7		7		2	13
Scaled Value	e 2	3	2			2	1		1	2		2		3	3
			1		1			10		4-					
Note:	Total Scaled	voluo		0		-5 1		10 2		-15 3					
	Relatio			U No		I DW		lium		3 igh					
	Kelatio	/11					with		11.	-511					

Sem	este	r		:	I	/											
Cou	rse (Code		:	X	CE 403											
Cou	rse I	Name	•	:	E	NGINEERIN	G GEOI	LOGY									
Prer	equi	isite		:													
	L	Т	Р	(С		С	Р	Α			L	Т	Р	Η		
	1	0	2	1	2		2.5	0.5	0.5			1	0	2	3		
			me:	Aft	er i	the completion	of the	course,	students	will	Don	nain			Le	vel	
be a	ble to												A				
COI												ve		Applying			
		geologic data using standards in engineering practice										motor	r	Guid	led R	lesponse	
CO2						als of the eng	ineering	proper	ties of I	Earth	Cogniti	ve		Appl	lying	,	
		mater	rials a	and	flu	uds.					Psychon	moto	r	Guided Response			
											Affectiv	ve		Resp	ondi	ng	
CO3						acterization and	d the me	chanics	of plana	r	Cogniti	ve		Unde	ersta	nding	
		rock s	slides	s ar	nd t	opples.					Affectiv	ve		Resp	ondi	ng	
CO4	1	Soil c	chara	cte	riza	ation and the U	nified So	oil Class	sificatior	ı	Cogniti	ve		Appl	lying	-	
		System.										motor	r	Guid	led R	lesponse	
											Affectiv	ve		Resp	ondi	ng	
COS		The mechanics of soils and fluids and their influence on									n Cognitive				Understanding		
		settle	ment	t, lio	que	efaction, and so	il slope		Affectiv	ve		Resp	ondi	ng			
			_		-												

UNIT I **GENERAL GEOLOGY**

Introduction-Branches of geology useful to civil engineering, scope of geological studies in various civil engineering projects. Department dealing with this subject in India and their scope of work- GSI, Granite Dimension Stone Cell, Petrology-Rock forming processes. Specific gravity of rocks. Ternary diagram. Igneous petrology- Volcanic Phenomenon and different materials ejected by volcanoes. Types of volcanic eruption. Mineralogical composition, structures & textures in rocks.

UNIT II PHYSICAL GEOLOGY

Physical Geology- Weathering. Erosion and Denudation. Factors affecting weathering and product of weathering. Engineering consideration. Superficial deposits and its geotechnical importance: Water fall and Gorges, River meandering, Alluvium, Glacial deposits, Laterite (engineering aspects), Desert Landform, Loess, Residual deposits of Clay - with flints, Solifluction deposits, mudflows, Coastal deposits.

UNIT III GEOLOGICAL HAZARDS

Geological Hazards- Rock Instability and Slope movement: Concept of sliding blocks. Different controlling factors. Instability in vertical rock structures and measures to prevent collapse. . Types of landslide. Prevention by surface drainage, slope reinforcement by Rock bolting and Rock anchoring, retaining wall, Slope treatment. Ground water: Factors controlling water bearing capacity of rock. Pervious & impervious rocks and ground water. Lowering of water table and Subsidence. Earthquake: Magnitude and intensity of earthquake. Seismic sea waves.Rock masses as construction material: Definition of Rock masses. Main features that affects the quality of rock engineering and design. Basic element and structures of rock those are relevant in civil engineering areas.

6

6

UNIT IV ENGINEERING GEOLOGY

Geology of dam and reservoir site- Required geological consideration for selecting dam and reservoir site. Failure of Reservoir. Favourable &unfavorable conditions in different types of rocks in presence of various structural features, precautions to be taken to counteract unsuitable conditions, significance of discontinuities on the dam site and treatment giving to such structures.

UNIT V ROCK MECHANICS

Rock Mechanics- Sub surface investigations in rocks and engineering characteristics or rocks masses; Structural geology of rocks. Classification of rocks, Field & laboratory tests on rocks, Stress deformation of rocks, Failure theories and sheer strength of rocks, Bearing capacity of rocks.

PRUCTICAL

30

6

- 1. Study of physical properties of minerals.
- 2. Study of different group of minerals.
- 3. Study of Crystal and Crystal system.
- 4. Identification of minerals: Silica group: Quartz, Amethyst, Opal; Feldspar group: Orthoclase, Plagioclase; Cryptocrystalline group: Jasper; Carbonate group: Calcite; Element group: Graphite; Pyroxene group: Talc; Mica group: Muscovite; Amphibole group: Asbestos, Olivine, Hornblende, Magnetite, Hematite, Corundum, Kyanite, Garnet, Galena, Gypsum.
- 5. Identification of rocks (Igneous Petrology): Acidic Igneous rock: Granite and its varieties, Syenite, Rhyolite, Pumice, Obsidian, Scoria, Pegmatite, Volcanic Tuff. Basic rock: Gabbro, Dolerite, Basalt and its varieties, Trachyte.
- 6. Identification of rocks (Sedimentary Petrology): Conglomerate, Breccia, Sandstone and its varieties, Laterite, Limestone and its varieties, Shales and its varieties.
- 7. Identification of rocks (Metamorphic Petrology): Marble, slate, Gneiss and its varieties, Schist and its varieties. Quartzite, Phyllite.
- 8. Study of topographical features from Geological maps. Identification of symbols in maps.

15 0 30 45

TEXT BOOKS

- 1. Engineering and General Geology, Parbin Singh, 8th Edition (2010), S K Kataria& Sons.
- 2. Text Book of Engineering Geology, N. ChennaKesavulu, 2nd Edition (2009), Macmillan Publishers India.
- 3. Engineering Geology, N.ChennaKesavalu, JNTU College of Engineering, Hydrabad. (2014)
- 4. Engineering Geology, SubinoyGangopadhyay,(2016)

REFERENCE BOOKS

1. Geology for Geotechnical Engineers, J.C.Harvey, Cambridge University Press (1982).

E-Resources – MOOC's

NPTEL Video Lectures on Engineering Geology

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2	-	3	1	-	-	-	1	1	2	-	3	2	-
CO 2	2	3	3	2	2	-	1	2	-	-	3	-	2	3
CO 3	2	3	3	3	2	2	1	2	-	-	-	2	2	3
CO 4	-	2	2	2	2	1	2	2	2	-	-	-	-	2
CO 5	3	-	2	3	2	-	2	3	2	2	1	2	3	-
Total	9	8	13	11	8	3	6	10	5	4	4	7	9	8
Scaled Value	2	2	3	3	2	1	2	2	1	1	1	2	2	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semes	ster		: Г	V									
Cours	e Code		: X	CE 404									
Cours	e Name	•	: N	IECHANICS	OF FLU	JIDS							
Preree	quisite		:										
]	L T	Р	C		С	Р	Α		L	Т	Р	H	
2	2 0	2	3		2.5	0.5	0.5		2	0	2	4	
Cours	e Outco	ome:	After	the completion	n of the	e course	, studen	ts Doma	in			Level	
will be	Il be able to C or P or A												
CO1				broad principle dynamics	Cognitive		Ap	Applying					
CO2	Unde mech			nitions of the b	in fluid	Cognitive	Cognitive						
CO3	Unde	erstan	d clas	sifications of fl	uid flow	/		Cognitive		Ur	derst	anding	
								Affective		Re	spon	ding	
CO4			n of t	he continuity, r	nomentu	um and e	energy	Cognitive		Ap	plyin	ıg	
	princ	iples						Psychomo	tor	Gu	ided	Respons	
						Affective		Re	spon	ding			
CO5			•	and analyzing d	istributi	ater	Cognitive		Ur	derst	anding		
	throu	gh pi	pe					Psychomo	Guided Response				
								Affective		Re	spon	ding	

UNIT I PROPERTIES OF FLUID AND FLUID STATICS

Basic Concepts and Definitions – Distinction between a fluid and a solid; Density, Specific weight, Specific gravity, Kinematic and dynamic viscosity; variation of viscosity with temperature, Newton's law of viscosity; vapour pressure, boiling point, cavitation; surface tension, capillarity, Bulk modulus of elasticity, compressibility.

Fluid Statics - Fluid Pressure: Pressure at a point, Pascal's law, pressure variation with temperature, density and altitude. Piezometer, U-Tube Manometer, Single Column Manometer, U-Tube Differential Manometer, Micro-manometers. Pressure gauges, Hydrostatic pressure and force on horizontal, vertical and inclined surfaces. Buoyancy and stability of floating bodies.

UNIT II FLUID KINEMATICS

Classification of fluid flow : steady and unsteady flow; uniform and non-uniform flow; laminar and turbulent flow; rotational and Irrotational flow; compressible and incompressible flow; ideal and real fluid flow; one, two and three dimensional flows; Stream line, path line, streak line and stream tube; stream function, velocity potential function. One-, two- and three -dimensional continuity equations in Cartesian coordinates.

UNIT III FLUID DYNAMICS

Surface and body forces; Equations of motion - Euler's equation; Bernoulli's equation –Derivation; Energy Principle; PRACTICAL applications of Bernoulli's equation: Venturimeter, orifice meter and pitot tube; Momentum principle; Forces exerted by fluid flow on pipe bend; Vortex Flow – Free and Forced

6

6

UNIT IV LAMINAR AND TURBULENT FLOW

Laminar Flow- Laminar flow through: circular pipes, annulus and parallel plates. Stokes law, Measurement of viscosity.

Turbulent Flow- Reynolds experiment, Transition from laminar to turbulent flow. Definition of turbulence, scale and intensity, Causes of turbulence, instability, mechanism of turbulence and effect of turbulent flow in pipes. Reynolds stresses, semi-empirical theories of turbulence, Prandtl's mixing length theory, universal velocity distribution equation. Resistance to flow of fluid in smooth and rough pipes, Moody's diagram.

UNIT V FLOW THROUGH PIPES

Loss of head through pipes, Darcy-Wisbech equation, minor losses, total energy equation, hydraulic gradient line, Pipes in series, equivalent pipes, pipes in parallel, flow through laterals, flows in dead end pipes, siphon, power transmission through pipes, nozzles. Analysis of pipe networks: Hardy Cross method, water hammer in pipes and control measures, branching of pipes, three reservoir problem.

PRACTICAL

- 1. Measurement of viscosity
- 2. Study of Pressure Measuring Devices
- 3. Stability of Floating Body
- 4. Hydrostatics Force on Flat Surfaces/Curved Surfaces
- 5. Verification of Bernoulli's Theorem
- 6. Venturimeter
- 7. Orifice meter
- 8. Impacts of jets
- 9. Flow Visualization -Ideal Flow
- 10. Length of establishment of flow
- 11. Velocity distribution in pipes
- 12. Laminar Flow

L	Т	Р	Total
30	0	30	60

TEXT BOOKS

- 1. R.K.Rajput, Fluid Mechanics and Hydraulic Machines, S.Chand& Company Ltd., New Delhi, 2002.
- 2. Bansal, R. K., Fluid Mechanics and Hydraulic Machines, Laxmi Publications (P) Ltd., New Delhi, 2011.
- 3. Hydraulics, Fluid Mechanics and Hydraulics Mechanics by P. N. Modi& S. M. Sethi Standard Publishers, New Delhi.
- 4. Hydraulics, Fluid Mechanics and Hydraulics Mechanics by K. R. Arora, Standard Publishers, New Delhi.

6

30

REFERENCE BOOKS

- 1. Theory and Applications of Fluid Mechanics, K. Subramanya, Tata McGraw Hill.
- 2. Introduction to fluid mechanics, Robert W. Fox, Philip J. Pritchard & Alan T. Mcdonald, Wiley Student Edition, 2009.
- 3. Fluid Mechanics and Machinery, C. S. P. Ojha, R. Bengtsson and P. N. Chadramouli0, Oxford University Press, 2010.
- 4. Fluid Mechanics with Engineering Applications, R.L. Daugherty, J.B. Franzini and E.J.Fennimore, International Student Edition, McGraw Hill.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	1			3	1			2	3	1		3	2	2
CO 2				3	3	2		1	3	2	1	1	1	1
CO 3		2	1	3	1	3		3	3	1		3	2	
CO 4	1		2	3	2	3		2	1			3	1	2
CO 5		2	1	3	3	1	1	1	2	2		3	2	2
Total	2	4	4	15	10	9	1	9	12	6	1	13	8	7
Scaled Value	1	1	1	3	2	2	1	2	3	2	1	3	2	2

Mapping of CO with PO's

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semest Course			: Г : Х	CE 405											
Course	Name	e	: N	IECHANICS	OF SOI	LIDS									
Prereq	uisite		:												
L	Т	Р	С		С	Р	A			L	Т	Р	Η	1	
2	0	2	3		2.5	0.5	0.5			2	0	2	4		
Course	Outco	me: A	fter t	he completion	of the co	ourse, st	udents w	vill be		Dom	ain	1	L	evel	
ıble to									(c or P	or A				
CO1 Analyse various situations involving structural members									Co	gnitiv	ve	L	Analyse		
	subjected to combined stresses by application of Mohr's circle of stress						`S	Psychomotor				Measure			
CO2	Calcı	ılate	the sh	ear force and l	bending	moment	t occurs a	at	Co	gnitiv	ve	Analyse			
	vario	us loa	ading	conditions.	C				Af	fectiv	e]	Respo	onse	
C O 3	Evalı	iate tl	he she	ear stress distri	bution fo	or beam	s of vari	ous	Co	gnitiv	ve	L	Analy	se	
	sectio	ons							Psychomot			otor Me		Measure	
CO4		Calculate the deflection at any point on a beam subjected								gnitiv	ve		Analy	se	
	a con	nbina	tion o	of loads					Psy	chon	notor]	Measu	ıre	
C O 5	Evalı	iate to	orsior	n problems in t	bars and	thin wa	lled men	nbers.	Co	gnitiv	ve		Analy	se	
									Psy	chon	notor]	Measu	ıre	

UNIT I SIMPLE STRESSES AND STRAINS

Concept of stress and strain, St. Venant's principle, stress and strain diagram, Elasticity and plasticity – Types of stresses and strains, Hooke's law – stress – strain diagram for mild steel – Working stress – Factor of safety – Lateral strain, Poisson's ratio and volumetric strain – Elastic moduli and the relationship between them – Bars of varying section – composite bars – Temperature stresses. Strain Energy – Resilience – Gradual, sudden, impact and shock loadings – simple applications, Compound Stresses and Strains- Two dimensional system, stress at a point on aplane, principal stresses and principal planes, Mohr circle of stress, ellipse of stress and their applications. Two dimensional stress-strain system, principal strains and principal axis of strain, circle of strain and ellipse of strain. Relationship between elastic constants.

UNIT II SHEAR FORCE AND BENDING MOMENT

Bending moment (BM) and shearforce (SF) diagrams.BM and SF diagrams for cantilevers simply supported and fixed beams with or without overhangs. Calculation of maximum BM and SF and the point of contra flexure under concentrated loads, uniformly distributed loads over the whole span or part of span, combination of concentrated loads (two or three) and uniformly distributed loads, uniformly varying loads, application of moments.

UNIT III FLEXURAL STRESSES AND SHEAR STRESSES

Theory of simple bending –Assumptions – Derivation of bending equation: $\frac{M}{I} = \frac{f}{y} = \frac{E}{R}$

Neutral axis – Determination of bending stresses – Section modulus of rectangular and circular sections (Solid and Hollow), I,T, Angle and Channel sections – Design of simple beam sections. Shear Stresses- Derivation of formula –Shear stress distribution across variousbeam sections like rectangular, circular, triangular, I, T angle sections.

6

6

UNIT IV SLOPE AND DEFLECTION

Slope and deflection- Relationship between moment, slope and deflection, Moment area method, Macaulay's method. Use of these methods to calculate slope and deflection for determinant beams

UNIT V TORSION AND THIN CYLINDERS

Torsion- Derivation of torsion equation and its assumptions. Applications of the equation of the hollow and solid circular shafts, torsional rigidity, Combined torsion and bending of circular shafts, principal stress and maximum shear stresses under combined loading of bending and torsion. Analysis of close-coiled-helical springs. Thin Cylinders and Spheres-Derivation of formulae and calculations of hoopstress, longitudinal stress in a cylinder, and sphere subjected to internal pressures

PRACTICAL

- 1. Tension test
- 2. Bending tests on simply supported beam and Cantilever beam.
- 3. Compression test on concrete
- 4. Impact test
- 5. Shear test
- 6. Investigation of Hook's law that is the proportional relation between force and stretching in elastic deformation,
- 7. Measurement of forces on supports in statically determinate beam,
- 8. Determination of shear forces in beams,
- 9. Determination of bending moments in beams,
- 10. Determination of torsion and deflection,
- 11. Measurement of deflections in statically determinate beam,
- 12. Measurement of strain in a bar
- 13. Bend test steel bar;
- 14. Yield/tensile strength of steel bar;

	L	Т	Р	Total	
	30	0	30	60	
T BOOKS					

1. Timoshenko, S. and Young, D. H., "Elements of Strength of Materials", DVNC, New York, USA.

- 2. Kazmi, S. M. A., "Solid Mechanics" TMH, Delhi, India.
- 3. 3. Hibbeler, R. C. Mechanics of Materials. 6th ed. East Rutherford, NJ: Pearson Prentice Hall, 2004
- 4. Laboratory Manual of Testing Materials William Kendrick Hall
- 5. Mechanics of Materials Ferdinand P. Beer, E. RusselJhonston Jr., John T. DEwolf TMH 2002.

6

6

REFERENCE BOOKS

- 1. Egor P Popov, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi, 2012, Second Edition.
- 2. Srinath L.S, "Advanced Mechanics of Solids", Tata McGraw-Hill Publishing Co., New Delhi, 2009, Third Edition.
- 3. William Nash, Theory and Problems of Strength of Materials, Schaum's Outline Series, McGraw-Hill International Edition, 2011.
- 4. Strength of Materials by R. Subramanian, Oxford University Press, New Delhi

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2	3		1	3						2		2	
CO 2	1	3				2					2		2	
CO 3	1	2	2	1			1	1			2		1	
CO 4	1	2	2	1			1	1			2		1	
CO 5	1	2												
Total	6	12	4	3	3	2	2	2			8		6	
Scaled Value	2	3	1	1	1	1	1	1	0	0	2	0	2	0

Note:

:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Cou Cou	Semester : IV Course Code : XCE 406 Course Name : GEOTECHNICAL ENGINEERING Prerequisite : L T P C P A L T P H T P H T P H T P H T P														
	L	Т	Р	C	_	С	Р	Α			L	Т	P	Η	
	2	0	2	3		2.5	0.5	0.5			2	0	2	4	
Cou able		Outcoi	ne: A	fter t	he completion	ill be	Don C or 1		L		Leve	l			
CO		probl	ems	relate	l classification ed to soil stress luding flow net	ses esti		Cogniti Psycho	motor	: (Understanding Observation				
					-	-			Affecti			•	onding		
CO					esses under an ICAL problem		Cogniti				rstand				
					ime rate of sett		eu lo	consona	ation	Psycho		Manipulation			
										Affecti	ve]	Respo	onding	5
CO.					oncept of soil	investi	gation f	for any	civil	Cogniti			Apply	ving	
		engin	eerin	g con	struction					Psycho Affecti		: I	Manij	oulati	on
										meeti		1	Valui	ng	
CO		Analy mediu		arth	retaining strue	soil	Cogniti	ve	1	Analy	vse				
CO	5	Evalu	iate t	bearin	ig capacity for	any	Cogniti	ve	I	Under	rstand	ling			
		kind o	of sha	allow	foundation sys	tem				Affecti	ve]	Respo	onding	3
CO					and pile group efficiency and			f soil	Cogniti Affecti				rstand onding	C	

UNIT I BASIC PROPERTIES AND EFFECT OF WATER IN SOIL

Historical development of Soil Engineering - Origin and general types of soils - soil structure, clay minerals-Three phase system- Identification and Classification of soils,

Soil water - capillary phenomena - concept of effective and neutral stresses - Permeability - determination of coefficient of permeability in the laboratory - Seepage flow - Head, gradient, pressure - steady state flow - two dimensional - flow net.

UNIT II STRESS DISTRIBUTION IN SOIL AND SHEAR STRENGTH

Vertical stress distribution in soil - Boussinesq and Westergaard's equation - Newmark's influence chart - principle, construction and use - Equivalent point load and other approximate methods - pressure bulb.

Shear strength - Mohr-Coulomb failure criterion - shear strength tests - Different drainage conditions - Shear properties of cohesionless and cohesive soils - Use of Mohr's circle - relationship between principal stresses and shear parameters.

UNIT III COMPRESSIBILITY, CONSOLIDATION AND COMPACTION

Terzaghi's one dimensional consolidation theory - pressure void ratio relationship - preconsolidation pressure - Total settlement and time rate of settlement - coefficient of consolidation - curve fitting methods - Correction for construction time. Compaction of soils - Standard Proctor, Modified Proctor, I.S. light & Heavy Compaction Tests - OMC - Zero Air voids line - Control of compaction - numerical problems

6

6

UNIT IV SOIL EXPLORATION, LATERAL EARTH PRESSURE AND STABILITY OF 6 SLOPES

Planning - Augur boring - Soundings - Sampling - Plate load test, static and dynamic penetrations tests - geophysical explorations

Plastic equilibrium - Rankine's theory - Active and passive earth pressure for cohesionless and cohesive soils - Earth pressure at rest - Coloumb's wedge theory - Rebhann's and Culmann's graphical solutions, Stability analysis

Stability of finite slopes -Toe failure, base failure, slip failure - Swedish Circle Method-Friction circle method- Factor of safety with respect to cohesion and angle of internal friction - Stability number - Stability charts

UNIT V FOUNDATIONS

Functions and requisites- Different types - choice of foundation type – general principles of design. Bearing capacity - types of failures - Prandtl's and Terzaghi's bearing capacity analysis - Bearing capacity based on settlement and building codes

Shallow foundation - spread footings - combined footings - trapezoidal and strap footings - Raft foundation - Contact pressure distribution - settlement analysis - Types of settlement, control

Deep foundation - piles - types - load carrying capacity of pile - static and dynamic formula - pile load test - penetration test - pile groups - Efficiency - Feld's rule - Converse Labarre formula, Settlement of piles and pile groups - Negative skin friction - under reamed piles, Introduction to piers, caissons, Coffer dams

PRACTICAL

- 1. Field Density using Core Cutter method and Sand replacement method.
- 2. Natural moisture content using Oven Drying method.
- 3. Field identification of Fine Grained soils.
- 4. Specific gravity of Soils.
- 5. Grain size distribution by Sieve Analysis and Hydrometer Analysis.
- 6. Atterberg's Limits : Liquid limit, Plastic limit and Shrinkage limit
- 7. Permeability test using Constant-head test and Falling-head method
- 8. Compaction test: Standard Proctor test and Modified Proctor test
- 9. Relative density
- 10. Consolidation Test
- 11. Triaxial Test (UU)
- 12. Vane shear test
- 13. Direct Shear Test
- 14. Unconfined Compression Strength Test

L	Т	Р	Total
30	0	30	60

6

TEXT BOOKS

- 1. Arora K. R., Geotechnical Engineering, Standard Publishers, 2006.
- 2. Purushothamaraj P., Soil Mechanics and Foundation Engineering, Dorling Kindersley(India) Pvt. Ltd., 2013
- 3. Venkatramaiah, Geotechnical Engg, Universities Press, 2000.
- 4. Punmia, B.C. Soil Mechanics and Foundation Engineering, Laxmi Publications Pvt. Ltd., New Delhi, 1995.
- 5. A V NarasimhaRao and C Venkatramaiah, Numerical Problems, Examples and Objective questions in Geotechnical Engineering, Universities Press (India) Ltd., 2000

REFERENCE BOOKS

- 1. GopalRanjan and Rao, P. Basic and Applied Soil Mechanics, New Age International Pvt. Limited, New Delhi, 2002.
- 2. Murthy, V.N.S., A text book of Soil Mechanics and Foundation Engineering, UBS Publishers Distributors Ltd., New Delhi, 1999
- 3. Braja M. Das, Fundamentals of Geotechnical Engineering, Thomson Asia Pvt. Ltd., Singapore, 2005.
- 4. Taylor D.W., Fundamentals of Soil Mechanics, Asia Publishing House, 1948.
- 5. Terzaghi K. and R. B. Peck, Soil Mechanics in Engineering Practice, John Wiley, 1967

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 O	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3	3			3				1			1	1	1
CO 2	2	3			3				1			2	1	1
CO 3	2	2						1					1	1
CO 4	3	2			1		1		1				1	1
CO 5	2	1			1								1	1
Total	2	1			1								1	1
Scaled Value	14	12	0	0	9	0	1	1	3	0	0	3	6	6

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

~			_											
Semest	ter	:	: Г	V										
Course	e Code	:	: X	CE407										
Course	e Name	e :	: S	URVEYING -	II									
Prereq	uisite	:	:											
L	T	P	C		С	Р	Α		L	Т	Р	H		
2	0	2	3		2.5	0.5	0.5		2	0	2	4		
Course will be			After	the completion	n of the	e course	ts Dom C or P		1	Level				
CO1	Illust	trate (he fe	atures of Triang	gulation	system		Cognitiv	Cognitive			Applying		
CO2	invol Elect	ved i ronic	n sur Dist	e importance veying such as ance Measurer rammetry and I	Hydrog ment, G	surveyin ositionir	g,	,						
CO3	Appl	y the	knov	vledge, techniq	ues, skil	lls, and	applicab	le Cognitiv	ve	App	olying	5		
	tools activi		he d	iscipline to en	igineerir	ng and	surveyir	^{1g} Psychor	notor	Gui	ded F	Response		
CO4				nowledge gain		ne imple	mentatio	on Cognitiv	ve	App	olying	5		
	of Ci	vil in	frastr	ucture facilities				Psychor	notor	Gui	ded F	Response		
								Affectiv	e	Res	pond	ing		
CO5				wledge on Surv	• •			U	/e	Unc	lersta	nding		
				e Hydrograph surement, Glo					e	Res	pond	ing		

UNIT I TRIANGULATION AND TRILATERATION

Photogrammetry and Remote Sensing.

Triangulation - network- Signals. Baseline - choices - instruments and accessories - extension of base lines - corrections - Intervisibility of height and distances - Trigonometric levelling - Axis single corrections

9

9

6

6

UNIT II CURVE SETTING

Elements of simple and compound curves – Method of setting out– Elements of Reverse curve - Transition curve – length of curve – Elements of transition curve - Vertical curves

UNIT III MODERN FIELD SURVEY SYSTEMS

Principle of Electronic Distance Measurement, Modulation, Types of EDM instruments, Distomat, Total Station – Parts of a Total Station – Accessories –Advantages and Applications, Field Procedure for total station survey, Errors in Total Station Survey; Global Positioning Systems- Segments, GPS measurements, errors and biases, Surveying with GPS, Co-ordinate transformation, accuracy considerations.

UNIT IV PHOTOGRAMMETRY SURVEYING

Introduction, Basic concepts, perspective geometry of aerial photograph, relief and tilt displacements, terrestrial photogrammetry, flight planning; Stereoscopy, ground control extension for photographic mapping- aerial triangulation, radial triangulation, methods; photographic mapping- mapping using paper prints, mapping using stereo plotting instruments, mosaics, map substitutes.

UNIT V REMOTE SENSING

Introduction –Electromagnetic Spectrum, interaction of electromagnetic radiation with the atmosphere and earth surface, remote sensing data acquisition: platforms and sensors; visual image interpretation; digital image processing.

PRACT	ICAL				30
Sl.No.	List of Experiments				Cos
1.	Setting out simple circular curve				1
2.	Area calculation and contouring using Total Station				2
3.	Co-ordinate measurement using Global Positioning System				2
		L	Т	Р	Total
		30	0	30	60
		-			

TEXT BOOKS

- 1. Punmia B.C. Surveying, Vols. I, II and III, Laxmi Publications, 2007
- 2. Madhu, N, Sathikumar, R and Satheesh Gobi, Advanced Surveying: Total Station, GIS and Remote Sensing, Pearson India, 2006.
- 3. Manoj, K. Arora and Badjatia, Geomatics Engineering, Nem Chand & Bros, 2011.

REFERENCE BOOKS

- 1. Bhavikatti, S.S., Surveying and Levelling, Vol. I and II, I.K. International, 2010.
- 2. Chandra, A.M., Higher Surveying, Third Edition, New Age International (P) Limited, 2002.
- 3. Anji Reddy, M., Remote sensing and Geographical information system, B.S. Publications, 2001.

E-Resources – MOOC's

NPTEL Video Lectures on Surveying

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2	1	3	3	3	2	1	3	2	3	3	3	3	3
CO 2	2	1	3	3	3	2	1	3	2	3	3	3	3	3
CO 3	3	2	3	1	3	2	0	1	1	0	2	3	3	3
CO 4	2	3	2	1	3	3	3	3	1	1	2	3	3	2
CO 5	3	3	1	1	3	2	0	2	2	3	2	3	1	2
Total	2	1			1								1	1
Scaled Value	14	11	12	9	16	11	5	12	8	10	12	15	14	14

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Seme	ster		IV												
Subje	ect Na	ame	MA	TERI	ALS TEST	FING 8	k EVA	LUAT	ION						
Subje	ect Co	ode	XC	E 409											
Prere	equisi	te													
Γ	L	Т	Р	С		С	Р	A			L	Т	Р	Н]
	2	0	2	3		1.5	1.2	0.3			2	0	2	4	
Cours able t		tcome.	: After	the co	mpletion o	f the co	urse, si	udents	will be	-	Don	nain		Leve	el
CO1	Un	dersta	nd the	e use o	of non-con	vention	1 Engi	neering	Cognitive			Ur	dersta	and	
	ma	terials							Ps	sycho	notor	Perception			
CO2	Un	dersta	nd th	ie var	ious mode	s of fai	lure in	compr	ession,	Co	ogniti	ve	Understand		
	ten	sion, a	and sh	ear						Ps	sycho	notor	M	echani	sn
CO3	Un	dersta	nd the	e stan	dard testing	g and ev	valuatio	on proc	edure	Co	ogniti	ve	Ur	dersta	anc
										Ps	sycho	notor	Pe	rcepti	on
CO4	Ap	ply t	he co	oncepts	of fract	ure me	chanic	s to	various	Co	ogniti	ve	Ap	ply	
	ma	terials								A	ffectiv	ve	Re	spons	e
CO5	Ad	opt s	pecial	conc	reting tech	nologie	es to	meet o	out the	Co	ogniti	ve	Ap	ply	
	mo	dern c	constru	iction	requiremen	ts.			Ps	ycho	notor	M	echani	sm	

UNIT - I CONSTRUCTION MATERIALS

Brick and Stones, Cements, M-Sand, Ceramics, and Refractories, Bitumen and asphaltic materials, Timbers, Glass and Plastics, Structural Steel and other Metals, Paints and Varnishes, Acoustical material, geo-textiles, rubber, asbestos, laminates and adhesives, Graphene, Carbon composites and other engineering materials including properties and uses

5

4

5

8

8

UNIT - II INTRODUCTION TO MATERIAL TESTING

Mechanical behaviour and mechanical characteristics; Elasticity – principle and characteristics; Plastic deformation of metals; Tensile test – standards for different materials (brittle, quasi-brittle, elastic etc.,) True stress – strain interpretation of tensile test; hardness tests; Bending and torsion test; strength of ceramics; Internal friction, creep – fundamentals and characteristics; Brittle fracture of steel – temperature transition approach

UNIT- III STANDARD TESTING & EVALUATION

Mechanical testing and discussion, Naming systems for various irons, steels and nonferrous metals - Elastic deformation; Plastic deformation; Impact test

UNIT-IV FRACTURE MECHANICS

Background; Fracture toughness – different materials; Fatigue of material; Creep, concept of fatigue; Structural integrity assessment procedure and fracture mechanics

UNIT – V SPECIAL CONCRETES

Plain, Reinforced and steel fibre/ glass fibre-reinforced, light-weight concrete, High Performance Concrete, Polymer Concrete

PRACTICAL

- 1. Test on Bricks and Blocks
- 2. Test on Timber specimens
- 3. Tests on coarse and fine aggregates
- 4. Tests on Concrete Cubes and Beams
- 5. Hardness tests (Brinnel's and Rockwell)
- 6. Tests on closely coiled and open coiled springs
- 7. Concrete Mix Design as per BIS
- 8. Tests on unmodified bitumen and modified binders with polymers
- 9. Bituminous Mix Design and Tests on bituminous mixes Marshall method

L	Т	Р	Total
30		30	60

TEXT BOOKS

- 1. Chudley, R., Greeno (2006), 'Building Construction Handbook' (6th ed.), R. Butterworth-Heinemann
- 2. Khanna, S.K., Justo, C.E.G and Veeraragavan, A, ' Highway Materials and Pavement Testing', Nem Chand& Bros, Fifth Edition
- 3. KyriakosKomvopoulos (2011), Mechanical Testing of Engineering Materials, Cognella

REFERENCES

- 1. Various related updated & recent standards of BIS, IRC, ASTM, RILEM, AASHTO, etc. corresponding to materials used for Civil Engineering applications
- 2. E.N. Dowling (1993), Mechanical Behaviour of Materials, Prentice Hall International Edition
- 3. American Society for Testing and Materials (ASTM), *Annual Book of ASTM Standards* (post 2000)
- 4. Related papers published in international journals

	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO 1	PSO 2
CO1	2	0	0	2	2	0	0	0	0	0	0	2	0	0
CO2	0	1	2	2	0	2	0	0	0	2	1	1	0	0
CO3	1	0	2	2	0	2	0	0	0	2	1	1	0	0
CO4	2	0	2	2	0	2	0	0	0	2	1	1	0	0
CO5	3	2	3	3	1	3	0	2	2	3	2	3	0	0
Total	6	3	9	11	3	9	0	2	2	9	5	8	0	0
Scaled value	1	1	2	2	1	2	0	1	1	2	1	2	0	0

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sen	neste	r	:	: V	7								
Coι	ırse (Code	:	X	CE501								
Coι	ırse I	Name	e :	: N	IECHANIC	S OF MA	TERIA	LS					
Pre	requ	isite	:	: N	lil								
	L	Т	Р	С		С	Р	Α	L	Т	Р	H	
	3	0	0	3		2	0	1	3	0	0	3	

Course Objectives

- Understand the deformation and strains under different load action and response in terms of forces and moments
- To gain the knowledge on energy methods used to derive the equations to solve engineering problems
- Make use of the capabilities to determine the forces and moments for design

Course be able	Outcome: After the completion of the course, students will to	Domain C or P or A	Level
CO1	Understand the concept of theories of failure	Cognitive	Understanding
CO2	Understand the deformation and strains under different load action and response in terms of forces and moments	Cognitive	Understanding
CO3	Able to understand the Thin-walled Pressure Vessels	Cognitive	Understanding
CO4	Understand the energy methods used to derive the equations to solve engineering problems	Cognitive Affective	Understanding Receiving
CO5	Illustrate stability of columns and plastic design	Cognitive Affective	Understanding Receiving

COURSE CONTENT

UNIT I STRESS – STRAIN RELATIONSHIP

Stress and strain tensor, Yield criteria and theories of failure; Tresca, Von-Mises, Hill criteria, Heigh-Westerguard's stress space – Plastic stress strain relation – Saint Venant's principles, Principle of superposition and Uniqueness theorem

UNIT II FORCE, MOMENT AND DEFORMATION

Forces and Moments Transmitted by Slender Members, Shear Force and Bending Moment Diagrams, Momentum Balance, Stress States / Failure Criterion - Force-deformation Relationships and Static Indeterminacy, Uniaxial Loading and Material Properties, Trusses and Their Deformations, Statically Determinate and Indeterminate Trusses,

UNIT III ELASTICITY AND ELASTICITY BOUNDS

Stress-strain-temperature Relationships and Thin-walled Pressure Vessels, Stress and strain Transformations and Principal Stress, Failure of Materials

UNIT IV COMBINED STRESSES AND ENERGY METHODS

Pure Bending, Moment-curvature Relationship, Beam Deflection, Symmetry, Superposition, and Statically Indeterminate Beams, Shear and Torsion, Torsion and Twisting, Thermoelasticity, Energy methods, Variational Methods; Strain energy, elastic, complementary and total strain energy, Strain energy of axially loaded bar, Beam in bending, shear and torsion; General energy theorems, Castigliano's theorem, Maxwell Bettie's reciprocal theorem; Virtual work and unit load method for deflection, Application to problems of beams and frames. 11

7

9

UNIT V STRUCTURAL STABILITY

Stability of columns, Euler's formula, end conditions and effective length factor, Columns with eccentric and lateral load; Plasticity and Yield Design covering 1D-Plasticity – An Energy Approach, Plasticity Models, Limit Analysis and Yield Design

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Nash, W. A. Strength of Materials. 3d ed. Schaum's Outline Series, McGraw-Hill, 1994.
- 2. Hibbeler, R. C. Mechanics of Materials. 6th ed. East Rutherford, NJ: Pearson Prentice Hall, 2004
- 3. Kazmi, S. M. A., 'Solid Mechanics" TMH, Delhi, India.

REFERENCE BOOKS

- Hertzberg, R. W. Deformation and Fracture Mechanics of Engineering Materials. 4thed. John Wiley & Sons, 1996
- 2. Collins, J. A. Failure of Materials in Mechanical Design. 2nd ed. John Wiley & Sons, 1993.
- 3. Courtney, T. H. Mechanical Behavior of Materials. McGraw-Hill, 1990.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	1	1											1	1
CO 2	1	2											2	2
CO 3	2		2	2			2	2					2	2
CO 4	2						2	2					3	3
CO 5	2												3	3
Total	8	3	2	2			4	4					11	11
Scaled Value	2	1	1	1	0	0	1	1	0	0	0	0	3	3

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sen	neste	r	:	· V									
Сот	ırse (Code	:	X	CE502								
Сот	ırse I	Name	:	H	YDRAULIC I	ENGINI	EERING	J.					
Pre	requ	isite	:	F	LUID MECH	ANICS							
	L	Т	Р	С		С	Р	Α	L	Т	Р	Н	
	2	0	1	3		2	1	0	2	0	2	4	

Course Objectives

- To understand the importance of study on model and prototype analysis.
- To introduce hydraulic engineering problems like open channel flows and hydraulic jump.
- To relate the theory and practice of problems in hydraulic engineering

Course be able	Outcome: After the completion of the course, students will to	Domain C or P or A	Level
CO1	Compute the coefficients using the theory of boundary layer	Cognitive	Understanding
CO2	<i>Perform</i> dimensional analysis for problems in fluid mechanics	Cognitive	Understanding
CO3	<i>Illustrate</i> the various theories dealing with the flow phenomenon of fluids and <i>Design</i> the open channels	Cognitive	Understanding
CO4	Classify and design of the hydro-machinery and the	Cognitive	Understanding
	components, function and use of different types of turbines.	Psychomotor	Mechanism
CO5	Describe and Discuss the working principles of pumps.	Cognitive	Understanding
		Psychomotor	Mechanism

COURSE CONTENT

UNIT I BOUNDARY LAYER ANALYSIS

Assumption and concept of boundary layer theory. Boundary-layer thickness, displacement, momentum & energy thickness, Laminar and Turbulent boundary layers on a flat plate; Laminar sub-layer, smooth and rough boundaries. Local and average friction coefficients. Separation and Control.

UNIT II	DIMENSIONAL ANALYSIS AND HYDRAULIC SIMILITUDE 6					
	Dimensional homogeneity, Rayleigh method, Buckingham's Pi method and other methods. Dimensionless groups. Similitude, Model studies, Types of models. Application of dimensional analysis and model studies to fluid flow problem.					
UNIT III	OPEN CHANNEL FLOW	6				
	Comparison between open channel flow and pipe flow, geometrical parameters of a channel, classification of open channels, classification of open channel flow, Velocity Distribution of channel section					
UNIT IV	TURBINES	6				
	Turbines – classification –Pelton wheel –Francis and Kaplan turbines –draft tubes – performance of turbines – specific speed and their significance.					
UNIT V	*	6				

PRACTICAL

- 1. Determination of the performance characteristics of a Centrifugal pump
- 2. Determination of the performance characteristics of a Reciprocating pump
- 3. Determination of the performance characteristics of a Jet pump
- 4. Determination of the performance characteristics of a Submersible pump
- 5. Determination of the performance characteristics of Pelton Turbine
- 6. Determination of the performance characteristics of a Francis Turbine

L	Т	Р	Total	
30	0	30	60	

TEXT BOOKS

- 1. Hydraulics, Fluid Mechanics and Hydraulics Mechanics by K. R. Arora, Standard Publishers, New Delhi.
- 2. Hydraulics, Fluid Mechanics and Hydraulics Mechanics by P. N. Modi& S. M. Sethi Standard Publishers, New Delhi.
- 3. Bakhmeteff, "Hydraulics of open channel", Tata McGraw Hill Education (P) Ltd., New Delhi, 2011

REFERENCE BOOKS

- 1. Open channel Flow, K. Subramanya, Tata McGraw Hill.
- 2. Open Channel Hydraulics, VenTe Chow, Tata McGraw Hill.
- 3. Bansal, R.K., Fluid Mechanics and Hydraulic Machines, Laxmi Publications (P) Ltd., New Delhi, 2011.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3	3	2	0	3	2	1	1	1	1	1	1	2	1
CO 2	3	2	2	0	1	1	1	1	0	1	0	1	1	1
CO 3	3	3	1	1	2	2	1	1	1	1	1	1	1	1
CO 4	2	1	2	1	2	1	0	1	0	1	0	1	2	1
CO 5	2	2	1	1	1	1	1	0	1	1	1	1	1	1
Total	13	11	8	3	2	7	4	5	3	5	3	5	7	5
Scaled Value	3	3	2	1	1	2	1	1	1	1	1	1	2	1

Mapping	of CO	with	PO's
mapping	01 00	** 1011	105

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sen	neste	r	:	· V									
Cou	ırse (Code	:	X	CE503								
Cou	ırse I	Name	:	S	TRUCTURAL	ANAL	YSIS						
Pre	requ	isite	:	: M	lechanics of So	olids							
	L	Т	Р	C		С	Р	Α	L	Т	Р	H	
	2	0	1	3		2.5	0	0.5	2	2	0	4	

- Students will be exposed to the theories and concepts of structural analysis.
- An understanding of real issues in the behaviours of structures.
- To introduce the students to various methods for the analysis of buildings

Course be able	<i>Outcome: After the completion of the course, students will to</i>	Domain C or P or A	Level
CO1	Identify the behavior of structural element under various loading condition.	Cognitive	Understanding
CO2	Analyse the continuous beams and rigid frames by slope defection method.	Cognitive Affective	Understanding Respond
CO3	Understand the concept of moment distribution and analysis of continuous beams and rigid frames with and without sway.	Cognitive	Understanding
CO4	Superimpose the effects of settlement and rotation of the supports over the regular analysis.	Cognitive	Understanding
CO5	Apply knowledge on advanced methods of analysis of structures including arches and cables.	Cognitive	Understanding

COURSE CONTENT

UNIT I INDETERMINATE FRAMES

Degree of static and kinematic indeterminacies for beams and plane frames - analysis of indeterminate pin-jointed frames - rigid frames.

UNIT II SLOPE DEFLECTION METHOD

Continuous beams and Rigid frames (with And without sway) – Symmetry and Asymmetry– Simplification for hinged end – Support Displacements.

UNIT III MOMENT DISTRIBUTION METHOD

Stiffness and carry over factors-Distribution and carryover of Moments- Analysis of continuous Beams with and without displacement - Plane Rigid Frames with and without Sway

UNIT IV MOVING LOADS AND INFLUENCE LINES

Influence lines for reactions in statically determinate structures – Influence lines for shear force and bending moment in beam sections – Calculation of critical stress resultants due to concentrated and distributed moving loads.

UNIT V ARCHES AND SUSPENSION CABLES

Types of Arches – Transfer of loads - Arch action- Horizontal forces- Analysis of Parabolic and Circular Arches(Hinged, fixed)- Cables- Components and their functions – Analysis of Suspension Cables, Reaction-Tension and Length of suspension cables.

L	Т	Р	Total
30	30	0	60

74

12

12

12

12

TEXT BOOKS

- 1. Vaidyanadhan, R and Perumal, P, "Comprehensive Structural Analysis Vol. 1 & Vol. 2", Laxmi Publications, New Delhi, 2013.
- 2. L.S. Negi& R.S. Jangid, Structural Analysis", Tata McGraw-Hill Publications, New Delhi, 2013
- 3. S SBhavikatti, Structural Analysis", Vikas Publishing House, 2011.

REFERENCE BOOKS

- 1. C.K. Wang, "Analysis of Indeterminate Structures", Tata McGraw-Hill, 2010.
- 2. B.C Punmia, Ashok Kumar Jain, Arun Kumar Jain, "Theory of Structures", Laxmi Publication, 2012.
- 3. DevdasMenon, "Structural Analysis", Narosa Publishers, 2010.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	3				1							1	
CO 2	3	1	1			1								
CO 3	1	3	2					1	1		1			
CO 4	3	2	2		1	1					1		1	
CO 5	1	1	1		1								1	1
Total	10	10	6		2	3	2	1	1		2		3	1
Scaled Value	2	2	2	0	1	1	1	1	1	0	1	0	1	1

	Note:	Total	0	1-5	6-10	11-15
_		Scaled value	0	1	2	3
		Relation	No	Low	Medium	High

Sei	meste	er		: V	7									
Co	urse	Code	;	: X	KCE504									
Co	urse	Name	e	: F	IYDROLOG	Y AND	WATE	ER RES	SOURCES E	NGI	NEE	RIN	G	
Pre	erequ	isite		: N	Nil									
	L	Т	Р	С		С	Р	Α		L	Т	Р	Η	
	2	2	0	3		3	0	0		2	2	0	4	

- To prepare the students for a successful career as hydrologist and water resources engineers
- To develop the ability among students to synthesis data and technical concepts for application in hydrology and water resources engineering
- To provide students an opportunity to work as a part of interdisciplinary team
- To promote student awareness of the life-long learning and to introduce them professional ethics and codes of professional practice in water resource engineering

Course	Outcome: After the completion of the course, students will	Domain	С	Level
be able	to	or P or A		
CO1	Understand the interaction among various processes in the hydrologic cycle	Cognitive		Understanding
CO2	Understand the forms of precipitation and measurements.	Cognitive Affective		Understanding Respond
CO3	Understand runoff, ground water and well hydrology	Cognitive		Understanding
CO4	Understand water requirement of crops-Crops and crop seasons in India, Methods of applying water.	Cognitive		Understanding
CO5	Understand application of Distribution systems- cannel, Dams, reservoir and spillway.	Cognitive		Understanding

COURSE CONTENT

UNIT I INTRODUCTION

Hydrologic cycle, water-budget equation, history of hydrology, world water balance, applications in engineering, sources of data. Precipitation - forms of precipitation, characteristics of precipitation in India, measurement of precipitation, rain gauge network, mean precipitation over an area, depth area- duration relationships, maximum intensity/depth-duration-frequency relationship, Probable Maximum Precipitation (PMP), rainfall data in India

UNIT II ABSTRACTIONS FROM PRECIPITATION

Evaporation process, evaporimeters, analytical methods of evaporation estimation, reservoir evaporation and methods for its reduction, evapotranspiration, measurement of evapotranspiration, potential evapotranspiration over India, actual evapotranspiration, interception, depression storage, infiltration, infiltration capacity, measurement of infiltration.

UNIT III RUNOFF

Runoff volume, SCS-CN method of estimating runoff volume, flow duration curve, flow-mass curve, hydrograph, factors affecting runoff, hydrograph, components of hydrograph, base flow separation, effective rainfall, unit hydrograph surface water resources of India, environmental flows.Ground water and well hydrology - forms of subsurface water, saturated formation, aquifer properties, geologic formations of aquifers, well hydraulics: steady state flow in wells, equilibrium equations for confined and unconfined aquifers, aquifer tests

9

9

UNIT IV WATER WITHDRAWALS AND USES

Water for energy production, water for agriculture, water for hydroelectric generation; flood control. Analysis of surface water supply, Water requirement of crops-Crops and crop seasons in India, cropping pattern, duty and delta; Quality of irrigation water; Soil-water relationships, root zone soil water, infiltration, consumptive use, irrigation requirement, frequency of irrigation; Methods of applying water to the fields: surface, sub-surface, sprinkler and trickle / drip irrigation.

UNIT V DISTRIBUTION SYSTEMS

9

9

Canal systems, alignment of canals, canal losses, estimation of design discharge. Design of channels- rigid boundary channels, alluvial channels, Canal outlets: nonmodular, semi-modular and modular outlets. Water logging: causes, effects and remedial measures. Lining of canals, types of lining. Dams and spillways embankment dams: Classification, design considerations, estimation and control of seepage, slope protection. Gravity dams: forces on gravity dams, causes of failure, stress analysis, elementary and practical profile. Arch and buttress dams. Spillways: components of spillways, types of gates for spillway crests; Reservoirs- Types, capacity of reservoirs, yield of reservoir, reservoir regulation, sedimentation, economic height of dam, selection of suitable site.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

1. Subramanya. K," Engineering Hydrology", Tata Mc-Graw Hill publishing pvt. Ltd., Newdelhi, 2010.

- 2. K N Muthreja, "Applied Hydrology", Tata Mc-Graw Hill publishing pvt.Newdelhi
- 3. Larry W. Mays "Water Resources Engineering", Wiley; 2 edition (June 8, 2010)

REFERENCE BOOKS

- 1. G.L. Asawa "Elementary Irrigation Engineering" New Age International Publisher (1999).
- 2. G. L. Asawa, "Irrigation Engineering", John Wiley & Sons Australia, Limited, 1994.
- 3. J D Zimmerman "Advances in Irrigation" Elsevier, 2013.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2		3		1	1								
CO 2	3	1	3		1	1								
CO 3	2	1	3		1	1								
CO 4	2	1	3		1	1								
CO 5	2		3		1	1								
Total	11	3	15		5	5								
Scaled Value	3	1	3	0	1	1	0	0	0	0	0	0	0	0

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	:	V									
Course Code	:	XCE505									
Course Name	:	ENVIRONME	NTAL E	NGINE	ERING	r					
Prerequisite	:	Nil									
LT	P	С	С	Р	А		L	Т	Р	H	
2 0	2	3	2.0	0.5	0.5		2	0	2	4	

- To acquire the knowledge on extent of pollution on land, water and air.
- To understand the physical, chemical, and biological phenomena for successful design, operation and maintenance of water and sewage treatment plants.
- To make the students conversant with the processing and disposal of municipal solid waste and Hazardous Waste

	Outcome: After the completion of the course, students will		Level
be able	to	or P or A	
CO1	Understand the impact of humans on environment and environment on humans	Cognitive	Understanding
CO2	Identify and value the effect of the pollutants on the environment: atmosphere, water and soil.	Cognitive	Understanding
CO3	Plan strategies to control, reduce and monitor pollution.	Cognitive Psychomotor	Understanding Mechanism
CO4	Select the most appropriate technique for the treatment of water, wastewater solid waste and contaminated air.	Cognitive Psychomotor	Understanding Mechanism
CO5	Conversant with basic environmental legislation	Affective	Respond

COURSE CONTENT

UNIT I WATER AND SEWAGE

Water: -Sources of Water and quality issues, water quality requirement for different beneficial uses, Water quality standards, water quality indices, Water Supply systems, Need for planned water supply schemes, Water demand industrial and agricultural water requirements, Components of water supply system; Transmission of water, Distribution system, Various valves used in W/S systems, service reservoirs and design.

8

7

Sewage- Storm Water- Quantification and design of Storm water; Sewage and Sullage, Quantity of Sewage, Sewage flow variations.Conveyance of sewage- Sewers, shapes design parameters, operation and maintenance of sewers, Sewage pumping; Sewerage, Sewer appurtenances, Design of sewerage systems, Pollution due to improper disposal of sewage.Government authorities and their roles in water supply, sewerage disposal

UNIT II WATER AND WASTEWATER TREATMENT

Water Treatment: Aeration, sedimentation, coagulation flocculation, filtration, disinfection, advanced treatments like adsorption, ion exchange, membrane processes. *Wastewater treatment:* Aerobic and anaerobic treatment systems, suspended and attached growth systems, Recycling of sewage.

UNIT III AIR AND NOISE

Air - Composition and properties of air, Quantification of air pollutants, Monitoring of air pollutants, Air pollution- Occupational hazards, Urban air pollution automobile pollution, Air quality standards, Control measures for Air pollution, construction and limitations.

Noise- Basic concept, measurement and various control methods.

UNIT IV SOLID AND HAZARDOUS WASTE MANAGEMENT

Solid waste management-Municipal solid waste, Composition and various chemical and physical parameters of MSW, Collection, transport,treatment and disposal of MSW. Special MSW: waste from commercial establishments and other urban areas, solid waste from construction activities, biomedical wastes. Government authorities and their roles in Solid waste management and monitoring/control of environmental pollution.

Hazardous waste: Types and nature of hazardous waste

UNIT V BUILDING PLUMBING

Introduction to various types of home plumbing systems for water supply and waste water disposal, high rise building plumbing, Pressure reducing valves, Break pressure tanks, Storage tanks, Building drainage for high rise buildings, various kinds of fixtures and fittings used.

PRACTICAL

- 1. Physical Characterization of water: Turbidity, Electrical Conductivity, pH
- 2. Analysis of solids content of water: Dissolved, Settleable, suspended, total, volatile, inorganic etc.
- 3. Alkalinity and acidity, Hardness: total hardness, calcium and magnesium hardness
- 4. Analysis of ions: chloride and sulfate
- 5. Optimum coagulant dose
- 6. Chemical Oxygen Demand (COD)
- 7. Dissolved Oxygen (D.O) and Biochemical Oxygen Demand (BOD)
- 8. Break point Chlorination
- 9. Ambient noise measurement

TEXT BOOKS

- 1. Peavy, H.s, Rowe, D.R, Tchobanoglous, G. *Environmental Engineering*, Mc-Graw Hill International Editions, New York 1985.
- 2. MetCalf and Eddy. *Wastewater Engineering, Treatment, Disposal and Reuse*, Tata McGraw-Hill, New Delhi.
- 3. Integrated Solid Waste Management, Tchobanoglous, Theissen& Vigil. McGraw Hill Publication International Editions, New York 1985.
- 4. CPHEEO Manual on Water Supply And Treatment, 1999
- 5. CPHEEO Manual on Sewerage And Sewage Treatment, 1993

 L
 T
 P
 Total

 30
 0
 30
 60

3

6

6

REFERENCE BOOKS

- 1. B.C. Punmia, Watersupply Engineering, Volume -II, Laxmi Publication 2008
- 2. B.C. Punmia, Wastewater Engineering, Volume II, Laxmi Publication 2008
- 3. S.K. Garg, Wastewater Engineering, Khanna Publishers, New Delhi, 2007
- 4. Gurucharan Singh," Water supply and Sanitary Engineering", Standard Publishers Distributors, 2009
- 5. Garg, S.K., "Environmental Engineering I & II", Khanna Publishers, New Delhi 2007
- 6. Rangwala, "Water Supply and Sanitary Engineering PB,24/e, Charotar Publishing house Pvt. Ltd.-Anand, 2011
- 7. Introduction to Environmental Engineering and Science by Gilbert Masters, Prentice Hall, New Jersey.
- 8. Standard methods for the Examination of Water and Wastewater, 17thEdition, WPCF, APHA and AWWA,USA,1989.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1		1	4	1	1	1			1				1	
CO 2		1	2	1	1	1			2				2	1
CO 3	1		3	2			1		1	1	1		2	
CO 4	1	1	1	1			1	1	2			1	1	
CO 5			2	2				1	4	1		2	5	
Total	2	3	12	7	2	2	2	2	10	2	1	3	11	1
Scaled Value	1	1	3	2	1	1	1	1	2	1	1	1	3	1

Note:	Total	0	1-5	6-10	11-15
	Scaled	0	1	2	3
	value	0	1	2	5
	Relation	No	Low	Medium	High

: V

Course Code : XCE506

Course Name : TRANSPORTATION ENGINEERING

Prerequisite :

Semester

L	Т	Р	С	С	Р	Α	L	Т	Р	Η	
2	0	2	3	2.0	0.5	0.5	2	0	2	4	

Course Objectives

• To design the geometric elements of highways

Nil

- To understand the fundamentals of traffic stream characteristics
- To characterize the pavement materials and to study the design of flexible pavements and rigid pavements

Course be able	<i>Outcome: After the completion of the course, students will to</i>	Domain C or P or A	Level		
CO1	Carry out surveys involved in planning and highway alignment	Cognitive	Understanding		
CO2	Design the geometric elements of highways and expressways	Cognitive	Understanding		
CO3	Carry out traffic studies and implement traffic regulation and control measures and intersection design .	Cognitive Affective	Understanding Respond		
CO4	Characterize pavement materials	Cognitive Psychomotor	Understanding Mechanism		
CO5	Design flexible and rigid pavements as per IRC	Cognitive	Understanding		

COURSE CONTENT

UNIT I INTRODUCTION

Highway development and planning-Classification of roads, road development in India, Current road projects in India; highway alignment and project preparation.

9

9

9

9

9

UNIT II HIGHWAY GEOMETRIC DESIGN

Geometric design of highways-: Introduction; highway cross section elements; sight distance, design of horizontal alignment; design of vertical alignment; design of intersections, problems

UNIT III TRAFFIC ENGINEERING

Traffic engineering & control- Traffic Characteristics, traffic engineering studies, traffic flow and capacity, traffic regulation and control; design of road intersections; design of parking facilities; highway lighting; problems.

UNIT IV HIGHWAY MATERIALS

Pavement materials- Materials used in Highway Construction- Soils, Stone aggregates, bituminous binders, bituminous paving mixes; Portland cement and cement concrete: desirable properties, tests, requirements for different types of pavements. Problems

UNIT V HIGHWAY PAVEMENT DESIGN

Design of pavements- Introduction; flexible pavements, factors affecting design and performance; stresses in flexible pavements; design of flexible pavements as per IRC; rigid pavements- components and functions; factors affecting design and performance of CC pavements; stresses in rigid pavements; design of concrete pavements as per IRC; problems

PRACTICALS

I. Tests on Aggregates

- a) Determination of Specific Gravity for coarse aggregate.
- b) Determination of Water absorption for coarse aggregate.
- c) Determination of Impact Strength for coarse aggregate.
- d) Determination of Crushing strength for coarse aggregate.
- e) Determination of Abrasion for coarse aggregate.
- f) Determination of fineness modulus foe coarse aggregate.
- g) Determination of Flakiness and Elongation Index for coarse aggregate.
- h) Determination of CBR value for the given sample.

II. Tests on Bitumen

- a) Determination of consistency for bitumen
- b) Determination of Softening point for bitumen

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Khanna, S.K., Justo, C.E.G and Veeraragavan, A, 'Highway Engineering', Revised 10th Edition, Nem Chand & Bros, 2017
- 2. Kadiyalai, L.R., 'Traffic Engineering and Transport Planning', Khanna Publishers.
- 3. ParthaChakraborty, 'Principles Of Transportation Engineering, PHI Learning

REFERENCE BOOKS

- 1. Fred L. Mannering, Scott S. Washburn, Walter P. Kilareski, 'Principles of Highway Engineering and Traffic Analysis', 4th Edition, John Wiley
- 2. Srinivasa Kumar, R, Textbook of Highway Engineering, Universities Press, 2011.
- 3. Paul H. Wright and Karen K. Dixon, Highway Engineering, 7th Edition, Wiley Student Edition, 2009.
- 4. IRC: 37-2001 Guidelines for the Design of flexible Pavements for Highways, IRC, New Delhi, 2012.
- 5. IRC: 58-2002(Second Revision) Guidelines for the Design of Rigid Pavements for Highways, IRC, New Delhi, 2002.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PS01	PSO2
CO 1				2	2			1		1	2			
CO 2	2		3			1							2	
CO 3							3					2		
CO 4				2						1				
CO 5		2	3			1			1				2	
Total	2	2	6	4	2	2	3	1	1	2	2	2	4	
Scaled Value	1	1	2	1	1	1	1	1	1	1	1	1	1	0
Note:	Total		(0		-5	6-	10	11	-15]			
	Scaled value		0		1			2		3				
	Re	Relation		lo	Lo	ow	Med	lium	Hi	gh				

Sen	ieste	r	:	· V										
Сот	ırse (Code	:	X	CE507									
Сот	ırse I	Name	:	C	ONSTRUCTI	ON EN	GINEE	RING 8	MANAGEM	ENT				
Pre	requ	isite	:	N	IL									
	L	Т	Р	C		С	Р	Α		L	Т	Р	Η	
	2	1	0	3]	2	0	1		2	1	0	3	

- To introduce the students to the basic concepts and principles of construction management.
- To familiarize the students with the various construction management techniques including scheduling, resource management.
- To study the elements of quality control and safety of construction projects.

Course be able	Outcome: After the completion of the course, students will to	Domain C or P or A	Level	
CO1	Understand the basic concepts of construction management such as types and functions of management, life-cycle stages of projects, project delivery types of contracts, and bidding	Cognitive	Understanding	
CO2	Ascertain a basic ability to plan, control and monitor construction projects with respect to time and cost	Cognitive Affective	Understanding Respond	
CO3	Understanding of modern construction practices.	Cognitive	Understanding	
CO4	Receiving an idea how construction projects are administered with respect to contract structures and issues.	CognitiveAffec tive	Understanding Respond	
CO5	Ability to put forward ideas and understandings to others with effective communication processes.	Cognitive Affective	Understanding Respond	

COURSE CONTENT

UNIT I BASICS OF CONSTRUCTION

Unique features of construction, construction projects types and features, phases of a project, Agencies involved and their methods of execution

UNIT II CONSTRUCTION PLANNING AND SCHEDULING

Stages of project planning: pre-tender planning, Pre-construction planning, detailed construction planning, Process of development of plans and schedules, work breakdown structure, activity lists, estimating durations, sequence of activities, Techniques of planning- Bar charts, Gantt Charts. Networks:Basic terminology, types of precedence relationships, preparation of CPM networks: activity on link and activity on node representation, computation of float values, PERT- determining three time estimates, analysis

UNIT III CONSTRUCTION METHODS & EQUIPMENT BASICS

Types of foundations and construction methods; Basics of Formwork and Staging; Common building construction methods (conventional walls and slabs; conventional framed structure with block work walls; Basics of Slip forming for tall structures)Equipment for Earthmoving, Dewatering; Concrete mixing, transporting & placing; Cranes, Hoists and other equipment for lifting; Equipment for transportation of materials.

13

9

UNIT IV PROJECT PLANNING, ORGANIZING, MONITORING & CONTROL

Site layout including enabling structures, developing site organization, Documentation at site; Manpower: planning, organizing, staffing, motivation; Materials: concepts of planning, procurement and inventory control; Equipment: basic concepts of planning and organizing; Funds: cash flow, sources of funds; and S-Curves. Earned Value; Resource Scheduling- Bar chart, resource constraints and conflicts; resource aggregation, allocation, smoothening and leveling. Common Good Practices in Construction. Supervision, record keeping, periodic progress, reports, periodical progress meetings. Updating of plans: purpose, frequency and methods of updating. Common causes of time and cost overruns and corrective measures.

9

9

UNIT V CONSTRUCTION QUALITY & CONTRACTS MANAGEMENT

Concept of quality, quality of constructed structure, use of manuals and checklists for quality control, role of inspection, basics of statistical quality control. Safety, Health and Environment on project sites: accidents; their causes, effects and preventive measures, costs of accidents, occupational health problems in construction, organizing for safety and health. Importance of contracts; Types of Contracts, parties to a contract; Common contract clauses (Notice to proceed, rights and duties of Various parties, notices to be given, Contract Duration and Price. Performance parameters; Delays, penalties and liquidated damages; Force Majeure, Suspension and Termination. Changes & variations, Dispute Resolution methods.Classification of costs, time cost, trade-off in construction projects, compression and decompression.

L T P Total

TEXT BOOKS

- 1. Kumar NeerajJha, "Construction Project management", Dorling Kindersley, Publishers, New Delhi.2013.
- 2. Chitkara.K.K, "Construction Project Management planning, Scheduling and control", Tata McGraw Hill Publishing Company, New Delhi, 2010.
- 3. National Building Code, Bureau of Indian Standards, New Delhi, 2017.

REFERENCE BOOKS

- 1. Punmia, B.C., Khandelwal, K.K., "Project Planning with PERT and CPM", Laxmi Publications, 2016.
- 2. Vohra.N.D., "Quantitative Techniques in Management", Tata McGraw Hill Publishing Company, New Delhi, 2010.
- 3. Joy.P.K, "Total Project Management", Macmillan India Ltd, New Delhi, 2000.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 O	PO 10	PO 11	PO 12	PS01	PSO2
CO 1				1	3	2	1	1	1					1
CO 2	2	1						2	1	1		1	1	1
CO 3	2	1		2		1	1	1	2		1		1	
CO 4						2	1	1	1	1			1	
CO 5			2				1							
Total	4	2	2	3	3	5	4	5	5	2	1	1	3	2
Scaled Value	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	•		-									•	•	

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester Course Code	: V : XMG508									
Course Name	: PROFESSION	AL PRA	CTICE	LAW	& ETHICS					
Prerequisite	: NIL									
	P C	C	Р	Α		L	Т	Р	Н	
3 0 0) 3	3	0	0]	3	0	0	3	
Course Objectiv	'es				-					
• To malta	the students understan	1 .1 .	c	1 /1		1 /	1	1. 11		intra on

- To develop some ideas of the legal and practical aspects of their profession
- To familiarize students with elementary knowledge of laws that would be of utility in their profession, including several new areas of law such as IPR, ADR.

Course	Outcome: After the completion of the course, students will be	Domain C	Level
able to		or P or A	
CO1	To Understand the various stakeholders roles and ethics governing the profession	Cognitive	Understanding
CO2	To able to contracts management and dispute resolution mechanisms;	Cognitive	Understanding
CO3	To give an understanding of Intellectual Property Rights, Patents.	Cognitive	Understanding
CO4	Able to understand construction related laws	Cognitive	Understanding
CO5	To develop ideas of the legal and practical aspects of their profession	Cognitive	Understanding

COURSE CONTENT

UNIT I PROFESSIONAL PRACTICE AND PROFESSIONAL ETHICS

9

Respective roles of various stakeholders: Government Agencies (constituting egulatory bodies and standardization organizations, prescribing norms to ensure

safety of the citizens)-Standardization Bodies (ex. BIS, IRC)(formulating standards of practice); professional bodies (ex. Institution of Engineers(India), Indian Roads Congress, IIA/ COA, ECI, Local Bodies/ Planning Authorities) (certifying professionals and offering platforms for interaction); Clients/ owners (role governed by contracts); Developers (role governed by regulations such as RERA); Consultants (role governed by bodies such asCEAI); Contractors (role governed by contracts and regulatory Acts and Standards); Manufacturers/ Vendors/ Service agencies (role governed by contracts and regulatory Acts and regulatory Acts and Standards)

Definition of Ethics, Professional Ethics, **Business** Ethics,Corporate Ethics, Engineering Ethics, Personal Ethics; Code of Ethics as defined in thewebsite of Institution (India): Profession. Professionalism. of Engineers ProfessionalResponsibility, Professional Ethics; Conflict of Interest, Gift Vs Bribery, Environmentalbreaches, Negligence, Deficiencies in state-of-the-art; Vigil Mechanism, Whistleblowing, protected disclosures.

UNIT II CONTRACTS MANAGEMENT

Indian Contract Act, 1972 and Amendments covering General principles of contracting; Contract Formation & Law; Privacy of contract; Various types of contract and their features; Valid & Voidable Contracts; Prime and sub-contracts; Joint Ventures & Consortium; Complex contract terminology; Tenders, Request For Proposals, Bids & Proposals; Bid Evaluation; Contract Conditions & Specifications; Critical /"Red Flag" conditions; Contract award & Notice To Proceed; Variations & Changes in Contracts; Differing site conditions; Cost escalation; Delays, Suspensions & Terminations; Time extensions & Force Majeure; Delay Analysis; Liquidateddamages& Penalties; Insurance & Taxation; Performance and Excusable Non-performance; Contract documentation; Contract Notices; Wrong practices in contracting (Bid shopping, Bid fixing, Cartels); Reverse auction; Case Studies; Build-Own-Operate & variations; Public- Private Partnerships; International Commercial Terms

UNIT III ARBITRATION, CONCILIATION AND ALTERNATIVE DISPUTE 7 RESOLUTION SYSTEM

Arbitration – meaning, scope and types – distinction between laws of 1940 and 1996; UNCITRAL model law – Arbitration and expert determination; Extent of judicial intervention; International commercial arbitration; Arbitration agreements – essential and kinds, validity, reference and interim measures by court; Arbitration tribunal – appointment, challenge, jurisdiction of arbitral tribunal, powers, grounds of challenge, procedure and court assistance; Award including Form and content, Grounds for setting aside an award, Enforcement, Appeal and Revision; Enforcement of foreign awards – New York and Geneva Convention Awards; Distinction between conciliation, negotiation, mediation and arbitration,confidentiality, resort to judicial proceedings, costs; Dispute Resolution Boards; LokAdalats

UNIT IV LABOUR AND LABOUR & OTHER CONSTRUCTION-RELATED LAWS 11

Role of Labour in Civil Engineering; Methods of engaging labour- on rolls, labour subcontract, piece rate work; Industrial Disputes Act, 1947; Collective bargaining; Industrial Employment (Standing Orders) Act, 1946; Workmen's Compensation Act, 1923; Building & Other Construction Workers (regulation of employment and conditions of service) Act (1996) and Rules (1998); RERA Act 2017, NBC 2017

UNIT V LAW RELATING TO INTELLECTUAL PROPERTY

Introduction – meaning of intellectual property, main forms of IP, Copyright, Trademarks, Patents and Designs, Secrets; Law relating to Copyright in India including Historical evolution of Copy Rights Act, 1957, Meaning of copyright – computer programs, Ownership of copyrights and assignment, Criteria of infringement, Piracy in Internet – Remedies and procedures in India; Law relatingto Patents under Patents Act, 1970 including Concept and historical perspective of patents law in India, Patentable inventions with special reference to biotechnology products, Patent protection for computer programs, Process of obtaining patent – application, examination, opposition and sealing of patents, Patent cooperation treaty and grounds for opposition, Rights and obligations of patentee, Duration of patents – law and policy considerations, Infringement and related remedies;

L	Т	Р	Total
45	0	0	45

9

TEXT BOOKS

- 1. B.S. Patil, Legal Aspects of Building and Engineering Contracts, 1974.
- 2. Meena Rao (2006), Fundamental concepts in Law of Contract, 3rd Edn. ProfessionalOffset
- 3. NeelimaChandiramani (2000), The Law of Contract: An Outline, 2nd Edn. AvinashPublications Mumbai
- 4. Ethics in Engineering- M.W.Martin&R.Schinzinger, McGraw-Hill
- 5. Ramappa (2010), Intellectual Property Rights Law in India, Asia Law House
- 6. Avtarsingh (2002), Law of Contract, Eastern Book Co.
- 7. Dutt (1994), Indian Contract Act, Eastern Law House
- 8. Anson W.R. (1979), Law of Contract, Oxford University Press

REFERENCE BOOKS

- 1. Engineering ethics: concepts and cases C. E. Harris, M.S. Pritchard, M.J.Rabins
- 2. Kwatra G.K. (2005), The Arbitration & Conciliation of Law in India with case law on
- 3. UNCITRAL Model Law on Arbitration, Indian Council of Arbitration
- 4. Wadhera (2004), Intellectual Property Rights, Universal Law Publishing Co.
- 5. The National Building Code, BIS, 2017
- 6. RERA Act, 2017

E-Resources

- 1. Construction Contracts:http://www.jnormanstark.com/contract.html
- 2. Contracts Law : http://www.laderapress.com/laderapress/contractslaw1.html
- 3. Contract&Agreements: http://www.tco.ac.ir/law/English/agreements/General/Contract%20Law/C.htm
- 4. Contracts: http://206.127.69.152/jgretch/crj
- 5. Business & Personal Law: http://yucaipahigh.com/schristensen/lawweb/lawch7.ppt
- 6. Types Of Contracts And Important Provisions: http://www.worldbank.org/ html/ opr/ consult/guidetxt/types.html
- 7. Contract Types/Pricing Arrangements: http://www.sandia.gov/policy

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	P0 11	PO 12	PS01	PSO2
CO 1	1	1	1			1	1			1			1	1
CO 2	1	1	1			1	1			1			1	1
CO 3	2	1	1			1	1			1				
CO 4	2		2			3	1			1			3	2
CO 5	3		3			2	1			1			3	2
Total	9	3	8			8	5			5			8	6
Scaled Value	2	1	2	0	0	2	1	0	0	1	0	0	2	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

C	·	• •											
Semest		•											
Course			CI509										
	e Name :		ONSTITUT	ION OF	INDIA								
Prereq	uisite :	N	IL		1	1					1		
L	, T P	С		С	Р	Α			L	Т	Р	Η	
2	0 0	2		2	0	0			2	0	0	2	
Course	e Objectives		-										
• 1	To know the l	Philo	sophy of India	n Constit	ution								
• 1	To gain the k	nowle	edge on Funda	mental ri	ghts and	l duties							
• 1	To understand	d the	function and r	ole of Ele	ection C	ommissi	on						
Course	Outcome: A	After	the completio	n of the	course,	students	will	Domai	n	С		Leve	el
be able	e to							or P	or A				
CO1	Understan	d the	salient featur	es of Indi	an Cons	titution		Cogniti	ve		Unde	erstand	ding
CO2	Gather the	e info	rmation on t	he contou	urs of C	onstituiti	ional	Cogniti	ve		Unde	erstand	ding
	Rights and	Duti	es					C					e
CO3	0		ons and power	s of Gov	ernance			Cogniti	ve		Unde	erstand	ding
CO4	Summarise	the l	Responsibiliti	es of Loca	al admir	istration		Cogniti	ve		Unde	erstand	ding
CO5			and the Functi					Cogniti				erstand	Ũ
2.50	1 10 10 10 411							esginti			- 1140		8

COURSE CONTENT

UNIT I	HISTORY AND PHIOLOSOPHY	9
	History of Making of the Indian Constitution: History-Drafting Committee, (Composition& Working)Philosophy of the Indian Constitution: Preamble-Salient Features	
UNIT II	CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES	9
	Fundamental Rights -Right to Equality-Right to Freedom-Right against Exploitation- Right to Freedom of Religion-Cultural and Educational Rights-Right to Constitutional Remedies-Directive Principles of State Policy-Fundamental Duties.	
UNIT III	ORGANS OF GOVERNANCE	7
	Parliament-Composition-Qualifications and Disqualifications-Powers and Functions- Executive-President-Governor-Council of Ministers-Judiciary, Appointment and Transfer of Judges, Qualifications-Powers and Functions	
UNIT IV	LOCAL ADMINISTRATION	11
	District's Administration head: Role and Importance, -Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Pachayati raj: Introduction, PRI: ZilaPachayat. Elected officials and their roles, CEO ZilaPachayat: Position and role. Block level: Organizational Hierarchy (Different departments),Village level: Role of Elected and Appointed officials, Importance of grass root democracy	
UNIT V	ELECTION COMMISSION	9
	Election Commission: Role and FunctioningChief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.	

L	Т	Р	Total
30	0	0	30

TEXT BOOKS

1. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.

REFERENCE BOOKS

1. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.

2. The Constitution of India, 1950 (Bare Act), Government Publication.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	1	1	1			1	1			1			1	1
CO 2	1	1	1			1	1			1			1	1
CO 3	1	1	1			1	1			1				
CO 4	1	1	2			3	1			1			3	2
CO 5	1	1	3			2	1			1			3	2
Total	5	5	8			8	5			5			8	6
Scaled Value	1	1	2	0	0	2	1	0	0	1	0	0	2	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sen	ieste	r	:	· V	Ί									
Сот	ırse (Code	:	X	CE 601									
Сот	irse I	Name	e :	S	TRUCTU	JRAL	ENGI	NEERIN	NG					
Pre	requ	isite	:	N	IL									
	L	Т	Р	С			С	Р	Α	L	Т	Р	Η	
	2	1	0	3]		3	0	0	2	1	0	3	I

Through this course the students will

- Understand the principles of structural engineering design.
- Exposed to the theories and concepts of both concrete and steel design and analysis
- Develop a solution for structural problems in component level.

Course be able	5 1 5 /	Domain C or P or A	Level
CO1	Apply their knowledge of structural mechanics in design problems of structural engineering	Cognitive	Understanding
CO2	Acquire the skills to solve problems with different loads on concrete and steel	Cognitive	Understanding
CO3	Design the Reinforced concrete elements	Cognitive	Understanding
CO4	Design the steel elements	Cognitive	Understanding
CO5	Understand the behavior of special structural elements	Cognitive	Understanding

COURSE CONTENT

UNIT I	INTRODUCTION TO STRUCTURAL ENGINEERING	9
	Principles of Equilibrium – Stability of structure - Concepts of energy principles, safety, sustainable development in performance; Principles of process of design Functions and role of structural engineer – architect – builder - user	
UNIT II	PLANNING AND DESIGN PROCESS	9
	Introduction to materials, Loads, and design methods, Structural properties of concrete – Grades and Strength of concrete – Durability – Reinforcing steel –Design Loads – Types – Codal provisions	
UNIT III	DESIGN OF REINFORCED CONCRETE ELEMENTS	9
	Basic design concepts – Limit state design - Design of reinforced concrete slabs – beams – columns – footings.	
UNIT IV	DESIGN OF STEEL ELEMENTS	9
	Introduction to Steel Design, Connections – Types - Design of Tension Members – Compression member – Flexural Member	
UNIT V	SPECIAL ELEMENTS AND APPLICATIONS	9
	Concepts of Cable Structures; bunkers and silos, Prestressed Concrete Bridges;	

Trusses, Corbels; Constructability and Structural Control; Fire Protection

L	Т	Р	Total
30	15	0	45

TEXT BOOKS

- 1. Devadas Menon & Unnikrishnan Pillai, "Reinforced Concrete Design", Tata McGraw-Hill Publishing Company Ltd., New Delhi 2011
- 2. Dr. B.C. Punmiya, "Reinforced Concrete Structures", Standard Laxmi Publication, Delhi, 1994
- 3. N.Subramaniyan, "Design of Steel Structures: Theory and Practice", Oxford University Press, 2010

REFERENCE BOOKS

- 1. Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India, Pvt. Ltd., New Delhi, Second Edition, 2010.
- 2. Krishna Raju, N., "Design of Reinforced Concrete Structures", CBS Publishers & Distributors, New Delhi, 2007.
- 3. Duggal S.K , " Limit State Design of Steel Structures", 2nd Edition , Tata McGraw-Hill Publishing Company Ltd., New Delhi 2014

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	3	1	2	1		2	1		1		1		2	2
CO 2	1	2	1			1			1	1			2	1
CO 3	1		3	1		1			1		1		2	1
CO 4	1		3	1		1			1		1		2	1
CO 5	2	2	2	1		1		1	1		1		2	2
Total	8	5	11	4		6	1	1	5	1	4		10	7
Scaled Value	2	1	3	1	0	2	1	1	1	1	1	0	2	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sen	neste	r	:	V	I									
Cou	ırse (Code	:	X	CE 602									
Cou	ırse I	Name	:	E	NGINEERIN	G ECOI	NOMIC	S, ESTI	IMATION AN	D CO	OSTI	NG		
Pre	requ	isite	:	N	IL									
	L	Т	Р	С		С	Р	Α		L	Т	Р	H	
									4				-	1

0.5

0.5

3

2

2

7

2 1 1

Through this course the students will

5

- To acquire knowledge in engineering economics
- To determine the quantities of items and labour requirement of civil engineering works.

2.0

- To prepare detailed and abstract estimate for the civil engineering works
- To introduce the students in depth knowledge of professional practice as well the quantity analysis of construction works like, multi-storied structures, Water works & sanitary works, Irrigation works, Road estimates, culverts, etc.

Course be able	Outcome: After the completion of the course, students will to	Domain C or P or A	Level
CO1	Understand the Economics in general, Economics of India particularly for public sector agencies and private sector businesses	Cognitive	Understanding
CO2	Understand the principles and methods of measurements	Cognitive	Understanding
CO3	Understand the methodology of pricing and to determine the unit cost of "components"	Cognitive Psychomotor	Understanding Set
CO4	Learning from Laboratory demonstration and field visits	Cognitive Psychomotor	Understanding Set
CO5	Prepare the actual estimate of any property/project	Cognitive Affective	Understanding Respond

COURSE CONTENT

UNIT I PRINCIPLES AND METHODOLOGY OF ECONOMICS

Basic Principles and Methodology, Demand/Supply – elasticity – Government Policies and Application. Theory of the Firm and Market Structure. Basic Macro-economic Concepts (including GDP/GNP/NI/Disposable Income) and Identities for both closed and open economies. Aggregate demand and Supply (IS/LM). Price Indices (WPI/CPI), Interest rates, Direct and Indirect Taxes, Public Sector Economics – Welfare, Externalities, Labour Market, Cost & Cost Control –Techniques, Types of Costs, Lifecycle costs, Budgets, Break even Analysis, Capital Budgeting, Application of Linear Programming, Statements – Cash flow.

UNIT II BASICS AND ESTIMATION OF BUILDINGS

Process of estimating - Construction activities and sequence – Units of measurements – Methods of estimating – Calculation of quantities of brick work, PCC, RCC, wood work, plastering, white washing, colour washing, painting, varnishing etc., relating to residential and non-residential multi- storeyed buildings. Introduction of estimation software.

10

UNIT III													
	Estimation of services – Sanitary and water supply installation cement concrete roads –Irrigation works - Retaining walls structures.												
UNIT IV	SPECIFICATIONS AND RATE ANALYSIS				8								
	Objectives and importance of specification - Specification of m of works - specification as per building classification- Languag Detailed and general specifications, Analysis of rates using stand of rates for conventional items – Principles of pricing of new item	e of sj dard da	pecific ata and	writing schedu	g - ule								
UNIT V	VALUATION				10								
	Necessity – Basics of valuation – Capitalized value – Depreciation Value of property – Calculation of Standard rent – Report prepara		calatio	n –									
TUTORIA	LS AND PRACTICALS				60								
1.	Building marking												
2.	Detailed Estimate of Residential buildings (RCC and Mason	ry)											
3.	Detailed Estimate of Water supply & Sanitary work												
4.	Detailed Estimate of Culverts and Bridges												
5.	Detailed Estimate of Earthwork for Roads												
6.	Detailed Estimate of Steel Roof Trusses												
7.	Preparation of Bar bending schedule												
8.	Rate Analysis of Different Items for Construction work												
9.	Preparation of valuation report in standard Government form	L											
10.	Estimation using Spread Sheet												
		L	Т	Р	Total								
		45	30	30	105								

TEXT BOOKS

- 1. Dutta, B.N., "Estimating and Costing in Civil Engineering Theory and Practice", UBS Publishers & Distributors Pvt. Ltd., New Delhi, 2010.
- 2. Kohli, D.D and Kohli, R.C., "A Text Book of Estimating and Costing (Civil)", S.Chand& Company Ltd., New Delhi, 2004
- 3. M.Chakraborty,"Estimating,Costing, Specification and Valuation in Civil Engineering",Kolkata,1997.

REFERENCE BOOKS

- 1. Aggarwal, A., Upadhyay, A.K., Civil Estimating, Costing &Valuation, S.K Kataria& Sons, New Delhi.
- 2. Birdie.G.S., "A Text Book on Estimating and Costing", DhanpatRai and Sons, New Delhi
- 3. Chandola, S.P. and Vazirani, Estimating and Costing, Khanna Publication
- 4. Rangwala. S.C., "Elements of Estimating and Costing", Charotar Publishing House, Anand
- 5. IS 1200-1974, Parts 1-25, Methods of Measurements of Building and Civil Engineering works Bureau of Indian Standards, New Delhi.
- 6. Standard Data Books and Schedule of rates of Central and State Public Works Departments

	P01	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	1	1		1	2	2		2	2	3	2	1	
CO 2	2	2	1		2	3				3				
CO 3	2		1		3			1			3	3	1	
CO 4	2			2	3			1	3				1	
CO 5	2			2			2	1		2	3	3	1	3
Total	10	3	3	4	9	5	4	3	5	7	9	8	4	3
Scaled Value	2	1	1	1	2	1	1	1	1	2	2	2	1	1
							1							
Note:		Total	(0	1.	-5	6-	10	11-	-15				
Scaled value		value	(0	1	1	-	2		3				
	Re	lation	N	10	Lo	ow	Med	lium	Hi	gh]			

Sem	lester	r	:	:										
Cou	rse (Code	:	X	CEE01									
Cou	Course Name : PAVEMENT DESIGN													
Prei	Prerequisite : NIL													
	L	Т	Р	С		С	Р	Α		L	Т	Р	Η	
	3	0	0	3]	2	0	1		3	0	0	3	

3 0 0 3 Course Objectives

Through this course the students will

- To gain the knowledge on components of highway and airport pavements
- To study the load and stress due to traffic loads
- To design the flexible pavements
- To design the rigid pavements
- To learn maintenance and repair on bituminous and concrete layers

• To gain the knowledge on components of highway and airport pavements

Course be able	Outcome: After the completion of the course, students will to	Domain C or P or A	Level
CO1	Understand the components of highway and airport pavements	Cognitive	Understanding
CO2	Utilize identified traffic factors efficiently in the pavement design.	Cognitive	Understanding
CO3	Optimally design of flexible pavements	Cognitive Affective	Understanding Respond
CO4	Optimally design of rigid pavements	CognitiveAffec tive	Understanding Respond
CO5	Assess pavement performance and suggest rectification options.	Cognitive	Understanding

COURSE CONTENT

UNIT I INTRODUCTION

Types and component parts of pavements, Factors affecting design and performance of pavements. Highway and airport pavements. Stresses and Deflections. Stresses and deflections in homogeneous masses. Burmister's two layer theory, three layer and multi-layer theories;

UNIT II TRAFFIC FACTORS IN PAVEMENT DESIGN

Wheel load stresses, various factors in traffic wheel loads; ESWL of multiple wheels. Repeated loads and EWL factors; sustained loads. Pavement behaviour under transient traffic loads.

UNIT III FLEXIBLE PAVEMENT DESIGN METHODS FOR HIGHWAYS AND 9 AIRPORTS

Empirical, semi-empirical and theoretical approaches, development, principle, design steps, advantages; design of flexible pavements as per IRC; Stresses in Rigid Pavements: Types of stresses and causes, factors influencing the stresses; general considerations in rigid pavement analysis, EWL; wheel load stresses, warping stresses, frictional stresses, combined stresses. 9

UNIT IV RIGID PAVEMENT DESIGN

Types of joints in cement concrete pavements and their functions, joint spacings; design of CC pavement for roads and runways as per IRC, design of joint details for longitudinal joints, contraction joints and expansion joints. IRC method of design by stress ratio method. Design of continuously reinforced concrete pavements

UNIT V PAVEMENT REHABILITATION

Maintenance, repair and rehabilitation of pavements including design of bituminous and concrete overlays as per IRC

L
45

TEXT BOOKS

- 1. Yang H. Huang : Pavement Analysis and Design, prentice Hall; second edition, August 18, 2003.
- 2. T. Papagiannakis, E. A. Masad, Pavement Design and Materials, John Wiley & Sons, 2008.

REFERENCE BOOKS

- 1. S.K Khanna, C.E.G Justo, A Veeraragavan.Highway Engineering, Nem Chand and Brothers, 10th Edition, Roorkee, 2015.
- 2. Pavement design from AASHTO American Association of State Highway and Transportation Officials, 2010.
- 3. IRC-37–2001.Guidelines for the Design of Flexible Pavements, New Delhi, 2012.
- 4. IRC 58-2002. Guideline for the Design of Rigid Pavements for Highways, New Delhi, 2002

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 O	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2	1	-	-	1	-								2
CO 2	2	1	-	-	1									2
CO 3	2	1	2	-	1									3
CO 4	3	2	2	1	1									3
CO 5	3	2	-	1	1									2
Total	12	7	4	2	5	0	0	0	0	0	0	0	0	12
Scaled Value	3	2	1	1	1	0	0	0	0	0	0	0	0	3

96

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

9

Ser	neste	er	:	:									
Co	urse	Code	e :	: X	CEE02								
Co	urse	Nam	ie :	: A	irport Plann	ing and	l Desigi	1					
Pre	erequ	iisite	:	: N	IL								
	L	Т	Р	C		С	Р	Α	L	Τ	Р	Η	
	3	0	0	3		2	0.5	0.5	3	0	0	3	

Through this course the students will

To learn about the aircraft characteristics, planning and components of airport. •

- To know about the airport pavement design and maintenance. •
- To learn about the navigational aids of airports. •

	e Outcome: After the completion of the course, students able to	Domain C or P or A	Level
CO1	Gain an insight on the planning and site selection of Airport .	Cognitive	Understanding
CO2	Know about layout and passenger facility systems.	Cognitive Affective	Understanding Respond
CO3	Analyze and design the elements for orientation of runways.	CognitivePsyc homotor	Understanding Mechanism
CO4	Design and maintain the pavements.	Cognitive Psychomotor	Understanding Mechanism
CO5	Understand the importance of navigational aids	Cognitive	Understanding

COURSE CONTENT

UNIT I	INTRODUCTION	9
	Introduction to air transport - Aircraft characteristics - Airport classification, Airport planning - Site selection- Airport obstructions and Zoning - Environmental guidelines for airport projects	
UNIT II	AIRPORT LAYOUT	8
	Typical Airport Layouts - terminal area, apron, hangers, parking and circulation Area.	
UNIT III	GEOMETRIC DESIGN	10
	Runway Design: Orientation, Wind Rose Diagram, Problems on basic and Actual Length, Geometric Design – Elements of Taxiway Design	
UNIT IV	AIRPORT PAVEMENTS	10
	Design factors – design methods for flexible and rigid pavements- maintenance and rehabilitation of pavements-airport drainage.	

UNIT V NAVIGATIONAL AIDS

Airport Markings and lighting –need of Air traffic control –air traffic control network – air traffic control aids .

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Khanna S.K., AroraM.G.& Jain S.S Airport Planning and Design, Nemchand and Bros, 2012.
- 2. Rangwala, "Airport Engineering", Charotar Publishing House, 2013.
- 3. Subash C Saxena, "Airport Engineering, Planning and Design" CBS Publishers & Distributors, 2015.

REFERENCE BOOKS

- 1. Niles A.S and Newell Airplane Structures Vol.II John Wiley and sons, New York
- 2. Environmental guidelines for Airport projects, Ministry of Environment and Forest.
- 3. IRC : 76-1979 Guidelines for structural strength Evaluation of Rigid Airfield pavements.
- 4. IRC :105-1928 Specifications for Bituminous Concrete for Airfield Pavements.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	1				1				1		1			
CO 2		2		2						2		1		
CO 3			3			1							2	
CO 4			2			1							2	
CO 5									1			1		
Total	1	2	5	2	1	2			2	2	1	2	4	
Scaled Value	1	1	1	1	1	1	0	0	1	1	1	1	1	0

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sen	neste	er	:	:										
Co	urse	Code	e :	X	CEE03									
Co	Course Name : Port and Harbour Engineering													
Pre	Prerequisite : NIL													
	L	Т	Р	С		С	Р	Α		L	Т	Р	Η	
	3	0	0	3		3	0	0		3	0	0	3	1

Through this course the students will

- To develop a fundamental understanding of Port and Harbour Engineering and its necessity.
- To visualize the relationship between Site Considerations and its Planning of Harbours.

• To know about the various Design Elements of On-Shore and Off-Shore Structures.

	Outcome: After the completion of the course, students able to	Domain C or P or A	Level
CO1	Develop an understanding of overall Port and Harbour Engineering and its impact.	Cognitive	Understanding
CO2	Absorbs the Key design Characteristics for design of Elements like Groins,Break waters, jetties etc.	Cognitive	Understanding
CO3	Fully conversant with advanced topics like coastal protection.	Cognitive	Understanding
CO4	Acquire a basic understanding about Navigational Aids	Cognitive	Understanding
CO5	Understand the various features in Ports, their construction, works and coastal Regulations to be adopted.	Cognitive	Understanding

COURSE CONTENT

UNIT I	INTRODUCTION 9
	Types of water transportation, water transportation in India, requirements of ports and harbours, classification of harbours, selection of site and planning of harbours, location of harbour, Site investigations – hydrographic survey, topographic survey, soil investigations, current observations, tidal observations
UNIT II	COASTAL STRUCTURES 9
	Design and construction of breakwaters, berthing structures - jetties, fenders, piers, wharves, dolphins, trestle, moles, Harbour docks, use of wet docks, design of wet docks, repair docks, lift docks, dry docks, keel and bilge blocking, construction of dry docks, gates for dry docks, pumping plant, floating docks, slipways, locks, size of lock, lock gates, types of gates;
UNIT III	DREDGING AND COASTAL PROTECTION 9
	Classification, types of dredgers, choice of dredger, uses of dredged materials, coastal erosion and protection, sea wall, revetment, bulkhead, coastal zone and beach profile.
UNIT IV	NAVIGATIONAL AIDS 9
	Requirements of signals, fixed navigation structures, necessity of navigational aids, light houses, beacon lights, floating navigational aids, light ships, buoys, radar.

UNIT V PORT FACILITIES

Port development, port planning, port building facilities, transit sheds, warehouses, cargo handling facilities, container handling terminal facilities, shipping terminals, inland port facilities. Inland waterways, Inland water transportation in India, classification of waterways, economics of inland waterways transportation, national waterways.

L	Τ	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Oza and Oza, Elements of Dock and Harbour Engineering, Charotar Publishing House, 1996.
- 2. Srinivasan R. Harbour, "Dock and Tunnel Engineering", 26th Edition 2013.
- 3. Rangwala, "Harbor Engineering", Charotar Publishing House, 2013.

REFERENCE BOOKS

- 1. Bindra S P, "A Course in Docks and Harbour Engineering", DhanpatRai and Sons, New Delhi, 2013.
- 2. Chandola S.P. A text on Transportation Engineering, S. Chand Limited, 2008.
- 3. B.L. GuptaAmit Gupta "Roads, Railways, Bridges, Tunnels & Harbour Dock", Standard Publishers Distributors ,2018.

	pping of	00					1		r	1		1			
		P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O	PO 10	P0 11	PO 12	PS01	PSO2
CO	1							2							
CO	2	1			2									2	
CO	3									3	1				
CO	4				1								3		
CO	5			1				3				2	2		
To	tal	1		1	3			5		3	1	2	5	2	
Sca	led Value	1	0	1	1	0	0	1	0	1	1	1	1	1	0
Γ	Note:	•	Total	(0	1	-5	6-	10	11	-15		•		•

2

Medium

3

High

1

Low

Mapping of CO with PO's

Scaled value

Relation

0

No

Sen	neste	r	:	:									
Сог	ırse (Code	:	X	CEE04								
Сог	ırse I	Name	:	R	AILWAY EN	GINEE	RING						
Pre	requ	isite	:	N	IL								
	L	Т	Р	С		С	Р	Α	L	Т	Р	Η	
	3	0	0	3		2	1	0	3	0	0	3	

Through this course the students will

- To know about the basics and design of various components of railway engineering. •
- To study about the types and functions of track, junctions and railway stations •
- To learn about the construction and maintenance of track •

Course Outcome: After the completion of the course, students will Domain

be able	to	or P or A				
CO1	Understand the methods of route alignment	Cognitive	Understanding			
CO2	Identify the elements of permanent way	Cognitive	Understanding			
CO3	Design and analyse the geometric elements	Cognitive Psychomotor	Understanding Mechanism			
CO4	Design the layout of track junctions	Cognitive Psychomotor	Understanding Set			
CO5	Understand the Construction techniques and Maintenance of Track laying and Railway stations.	Cognitive	Understanding			

COURSE CONTENT

UNIT I	INTRODUCTION	7
	Introduction to railway engineering - Route alignment surveys, conventional and modern methods	
UNIT II	COMPONENTS OF PERMANENT WAY	10
	Elements of permanent way – Rails, Sleepers, Ballast, rail fixtures and fastenings, Selection of gauges - Track Stress, coning of wheels, creep in rails, defects in rails	
UNIT III	GEOMETRIC DESIGN	10
	Geometric design of railway, gradient, super elevation, widening of gauge on curves	
UNIT IV	TRACK JUNCTIONS AND SIGNALLING	9
	Track Junctions-Points and crossings - types and functions - design and layout - simple problems - Railway stations and yards. Signalling and interlocking - control systems of train movements.	
UNIT V	CONSTRUCTION AND MAINTENANCE	9
	Earthwork – Stabilization of track on poor soil - Track drainage – Calculation of Materials required for track laying - Construction and maintenance of tracks	
		tal

L	Т	Р	Total
45	0	0	45

С

Level

TEXT BOOKS

1.Chandra S. and M.M. Agarwal, Railway Engineering, Second Edition, Oxford University Press, New Delhi, 2013.

2.Rangwala, S.C., Railway Engineering, Charotar Publishing House, Pvt. Limited, 2008.

3.Saxena, S.C. Railway Engineering, DhanpatRai, 2015.

REFERENCE BOOKS

- 1. Mundrey J.S. "A course in Railway Track Engineering". Tata McGraw Hill, 2007.
- 2. Chandola S.P. A text on Transportation Engineering, S. Chand Limited, 2008
- 3. AhujaT.D. Birdi G.S. Roads, Railways Bridges and Tunnels Engineering. Standard Book House -2015.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2				1				1	1		1		
CO 2				2							1			
CO 3	2		3			2							2	
CO 4	2		3			2							2	
CO 5									2	1	1	1		
Total	6		6	2	1	4			3	2	2	2	4	
Scaled Value	1	0	1	1	1	1	0	0	1	1	1	1	1	0

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sen	neste	r	:	:										
Сот	ırse (Code	;	X	CEE05									
Сот	ırse I	Name	e :	A	DVANCED S	TRUCT	URAL	ANALY	SIS					
Pre	requ	isite	:	S	TRUCTURAI	L ANAL	YSIS							
	L	Т	Р	C		С	Р	Α		L	Т	Р	Η	
	3	0	0	3		2	0	1		3	0	0	3	

Through this course the students will

- To introduce the Influence line for indeterminate structures.
- To study the behaviour of different types of frames by classical methods.
- To analyse the plastic nature of the structure using theorems and mechanisms.

Course be able	Outcome: After the completion of the course, students will to	Domain C or P or A	Level
CO1	Identify the behavior of indeterminate structure by influence lines.	Cognitive	Understanding
CO2	Apply knowledge on advanced methods of analysis of structures including for planes and rigid frames.	Cognitive	Understanding
CO3	Superimpose the effects of settlement and rotation of the supports over the regular analysis.	Cognitive	Understanding
CO4	Apply knowledge of finite element for determinate and indeterminate structures.	Cognitive	Understanding
CO5	Recognize the plastic analysis of structural elements.	Cognitive	Understanding
COUD			

COURSE CONTENT

UNIT I INFLUENCE LINES - INDETERMINATE STRUCTURES

Influence lines -Maxwell Betti's theorem- Muller Breslau's principle – Influence lines for continuous beams and single storey rigid frames – Indirect model analysis for influence lines of indeterminate structures.

UNIT II STIFFNESS MATRIX METHOD

Element and global stiffness matrices – Analysis of continuous beams – Co-ordinate transformations – Rotation matrix – Transformations of stiffness matrices, load vectors and displacements vectors – Analysis of pin-jointed plane frames and rigid frames.

UNIT III FLEXIBILITY MATRIX METHOD

Equilibrium and Compatibility – Determinate vs indeterminate structures – Indeterminacy - Primary structure – Compatibility conditions – Analysis of indeterminate pin-jointed plane frames, continuous beams, rigid jointed plane frames (with redundancy restricted to two).

UNIT IV FINITE ELEMENT METHOD

Introduction – Discrimination of a structure –differential equilibrium equations- strain displacement relation- isoparametric elements – Shape functions – Lagrange and Serendipity elements — Plane stress and plane strain.

9

9

9

UNIT V PLASTIC ANALYSIS OF STRUCTURES

Plastic moment of resistance – Plastic modulus – Shape factor – Load factor – Plastic hinge and mechanism – Plastic analysis of indeterminate beams and frames – Upper and lower bound theorems.

L

45

Т

0

Р

0

- 1. "Comprehensive Structural Analysis Vol. 1 & Vol. 2", Vaidyanadhan, R and Perumal, P, Laxmi Publications, New Delhi, 2003
- 2. Structural Analysis", L.S. Negi& R.S. Jangid, Tata McGraw-Hill Publications, New Delhi, Sixth Edition, 2003
- 3. Indeterminate Structures", Wang, C.K., McGraw-Hill

REFERENCE BOOKS

- 1. Ghali.A, Nebille, A.M. and Brown, T.G. "Structural Analysis" A unified classical and Matrix approach" –5th edition. Spon Press, London and New York, 2003.
- 2. Vazirani V.N, & Ratwani, M.M, "Analysis of Structures", Khanna Publishers, Delhi.
- 3. Structural Analysis A Matrix Approach G.S. Pandit& S.P. Gupta, Tata McGraw Hill., 2005

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2	3				1							1	
CO 2	3	1	1			1								
CO 3	1	3	2					1	1		1			
CO 4	3	2	2		1	1					1		1	
CO 5	1	1	1		1								1	1
Total	10	10	6		2	3	2	1	1		2		3	1
Scaled Value	2	2	2	0	1	1	1	1	1	0	1	0	1	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Total

Seme	ster		:									
Subje	ct Nam	ie	: DESI	DESIGN OF CONCRETE STRUCTURES								
Subje	ct Cod	e	: XCE	XCEE06								
Prere	quisite		: STR	UCTURAL A	NALYS	SIS						
L	Т	Р	H	H C P A L T P H								
3	0	0	3		1.5	0.5	1.0		3	0	0	3

- 1. Students will be exposed to the theories and concepts of structural design.
- 2. Hands-on design experience and skills will be gained and learned through problem sets and a comprehensive design project using software.
- 3. An understanding of real-world open-ended design issues will be developed.

Course	e Outcome: After the completion of the course, students will be able to	Domain
		C or P or A
CO1	Perceive the knowledge on basics of design	С
CO2	Interpret ultimate and serviceability limit state approaches in current structural design philosophy	С
CO3	Understand the design concept of structural elements	C & A
CO4	Model building structure and analyse structural elements for design actions	C & A

COURSE CONTENT

UNIT I	METHODS OF DESIGN OF CONCRETE STRUCTURES	9 Hrs.
	Study of the strength, behaviour, and design of indeterminate reinforced concret structures, Load and stresses, load combinations, Working stress and limit state Concepts of Yield line theory	
UNIT II	LIMIT STATE DESIGN FOR FLEXURE	9 Hrs.
	Design of one way and two way slab - singly and doubly reinforced beams - cont beams –Flanged beams – Staircase.	tinuous
UNIT III	LIMIT STATE DESIGN FOR SHEAR, BOND AND TORSION	9 Hrs.
	Behaviour of RC members in bond and anchorage – Design requirements –Beha RC beams in shear and torsion – Design of RC members for combined bending torsion.	
UNIT IV	DESIGN OF COLUMNS	9 Hrs.
	Types of columns –Design of short columns for axial, uniaxial and biaxial bendi Design of slender column.	ing –
UNIT V	DESIGN OF FOOTINGS	9 Hrs.
	Design of Isolated footings (Flat and Sloped) – Design of combined rectangular for two columns only – Design of Raft Footing.	footing

Lecture	Tutorial	Practical	Total
45			45

TEXT BOOKS

- 1. Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India, Pvt. Ltd., New Delhi,Second Edition, 2010.
- 2. Krishna Raju, N., "Design of Reinforced Concrete Structures", CBS Publishers & Distributors, New Delhi,2007.

REFERENCES

- 1. DevadasMenon&UnnikrishnanPillai, Reinforced Concrete Design,Tata McGraw-Hill Publishing Company Ltd., New Delhi 2011
- 2. Dr.P.Purushothaman, Reinforced Concrete Structures, Oxford Publication (P) Ltd, Delhi, 2007.
- 3. M.L.Gambhir, Design of reinforced concrete structures, PHI Learning Private Limited, 2013.
- 4. IS 456 -2000, Plain and Reinforced Concrete Code of Practice, 4th revision
- 5. SP16-1980.

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		1										2	
CO2	2	3		1		1	1						3	1
CO3	1	1	3	1		1	1	1			1		1	
CO4	1		2	1				1	1		1		3	
	7	4	6	3	1	2	2	2	1		2		9	1

1 - Low, 2 – Medium, 3 – High

Semester	:		
Course Code	:	XCEE07	

:

Course Name : CONCRETE TECHNOLOGY

Prerequisite

L	Т	Р	С	
3	0	0	3	

С	Р	А
3	0	0

L	Т	Р	Η
3	0	0	3

9

9

9

9

Course Objectives

Through this course the students will

- Understand the manufacturing process of concrete
- To get familiar in concrete mix design
- To know the causes and solution for deterioration of structures

Course be able	<i>Outcome: After the completion of the course, students will to</i>	Domain C or P or A	Level
CO1	Analyse the properties of ingredients of Concrete	Cognitive	Analyse
CO2	Design a concrete mix for various grade	Cognitive	Create
CO3	Assess the quality of concrete	Cognitive	Analyse
CO4	Identify the causes of distress in concrete	Cognitive	Apply
CO5	<i>Suggest</i> suitable solution for practical problems in concrete construction.	Cognitive	Analyse

COURSE CONTENT

UNIT I CONCRETE INGREDIENTS

Cement–Types –Properties –Testing; Aggregates: Classification- Properties-Testing-Artificial aggregates; Water – quality and sources – BIS Standards-Admixtures and Chemicals: Properties, Uses.

UNIT II CONCRETEMIXDESIGNAND PRODUCTION.

Introduction to MixDesign – selection of properties – Factors influencing the choice of mix design – Water binder ratio - Methods of concrete mixdesign – design problems – BIS Method –ACI method

Batching of materials – mixing of concrete materials – transportation of concrete – Ready mix concrete - Placing of concrete – Curing methods – removal of forms and finishing.

UNIT III PROPERTIES OF FRESH AND HARDENED CONCRETE

Properties of Fresh Concrete – Workability, Factors Affecting Workability, Slump Test Compacting Factor Test, Flow Table Test, Segregation, Bleeding, Setting Time; Strength of Concrete – Water/Cement ratio, Strengthtest for Compression, Tension, Flexure, Effect of age on Strength, Stress Strain Relation and Young's Modulus, Poisson's Ratio, Creep and Shrinkage - Introduction to Non-Destructive Test

UNIT IV DURABILITY OF CONCRETE

Durability of concrete - Factors affecting durability - water absorption – Permeability – corrosion – Acid attack – Sulphate Attack -Carbonation – Alkali Aggregate reaction – Freeze and Thaw – Chloride attack – Durability under sea water –Temperature Effects – Distress in concrete – Inspection and testing - Causes and remedies

UNIT V SPECIAL CONCRETES AND CONCRETEING METHODS

High strength and high performance concrete -Fibre reinforced concrete - Polymer modified concrete - Self-compacting concrete - Light weight concrete, High density concrete - Flyashconcrete

Special concreting methods: Pumped concrete, Ready mix concrete, Under-water concreting, Hot & cold weather concreting, Precast concrete - Gunite and Shotcrete – Ferrocement

L	Т	Р	Total
45	0	0	45

- 4. Shetty,M.S. "Concrete Technology: Theory and Practice",7th edition, S.Chand& Company, New Delhi,2014.
- 5. Gambhir, M.L. "Concrete Technology", 5th edition, Tata McGraw Hill New Delhi, 2013.
- 6. Santhakumar, A.R., "Concrete Technology", Oxford University Press, New Delhi, 2006

REFERENCE BOOKS

TEXT BOOKS

- 4. Neville, A.M. and Brookes, J.J. "Concrete Technology", Pearson Publishers, New Delhi, 2010.
- 5. SandorPopovic, "Concrete Materials, 2nd Edition, Properties, Specifications and Testing", William Andrew, 2012.
- 6. John Newman,"Advanced Concrete Technology Processes" 1st edition, Elsevier Science, 2003.

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2	3	1			1	1		1	1		1	2	3
CO 2	2	2	3			1	1		1	1		2	3	2
CO 3	2	3	2			1	1		1	1		2	3	3
CO 4	2	3	1			1	1		1	1		1	2	2
CO 5	2	2	2			2	1		1	3		1	2	2
Total	10	13	9	0	0	6	5	0	5	7	0	7	12	12
Scaled Value	2	3	2	0	0	2	1	0	1	2	0	2	3	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Seme	ester	•	:	:									
Cours	se (Code	:	X	CEE08	1							
Cours	se N	Vame	:	D	ESIGN	OF ST	TEEL S	TRUCT	URES				
Prere	equi	isite	:	:									
	L	Т	Р	С			С	Р	Α	L	Т	Р	H
	3	0	0	3			2	0	1	3	0	0	3

Course Objectives

- This course aims at providing students with a solid background on principles of structural steel connections. Students will be exposed to the theories and concepts of steel design and analysis.
- Hands-on design experience and skills will be gained and learned through problem sets and a comprehensive design project.
- An understanding of real-world open-ended design issues will be developed.

Course	Outcome: After the completion of the course, students will	Domain C	Level
be able	to	or P or A	
CO1	Design of structural connections	Cognitive	Analyse
CO2	Design of tension members	Cognitive	Create
CO3	Design of compression members	Cognitive	Analyse
		Affective	Respond
CO4	Understand fabrication of plate girders and gantry girders	Cognitive	Apply
		Affective	Respond
CO5	Understand the plastic behaviour of steel section.	Cognitive	Analyse

UNIT I	INTRODUCTION				9
	Properties of materials; loads and stresses, Design of semi-rigid resistant connections; Built-up sections.	d, rig	id and	mome	ent
UNIT II	TENSION MEMBERS				9
	Introduction, Design of tension members subjected to axial to splicing of tension member.	ensio	n and	bendii	ng,
UNIT III	COMPRESSION MEMBERS				9
	Introduction, Design of compression members, Beam-column co columns and their bases.	onnect	ions, I	Design	of
UNIT IV	FLEXURAL MEMBERS				9
	Loads, specification and design of beams and Plate girder – design gantry girders.	gn of	purlins	s, truss	es,
UNIT V	PLASTIC ANALYSIS				9
	Introduction to Plastic analysis; Simple cases of beams and steps/process to as per the most recent BIS code of practices Preret			ll desi	gn
	Γ	L	Т	Р	Total
		45	0	0	45

- 1. N.Subramaniayan, "Design of Steel Structures: Theory and Practice", Oxford University Press, 2010
- 2. S.S Bhavikatti, "Design of Steel Structures", I.K International Publishing Houses Pvt. Ltd, 2012.
- 3. Ramachandra S., "Design of Steel Structures Vol. I & II", Standard Publication, New Delhi, 2010.

REFERENCE BOOKS

- Duggal S.K., "Limit state Design of Steel Structures", 2nd edition, Tata McGraw Hill Education, 2014
- 2. Dayaratnam, P., "Design of Steel Structures", A.H.Wheeler& Co. Ltd., Allahabad, 2008
- 3. Jack C. McCormac, Stephen F.Csernak, "Structural Steel Design" Prentice Hall, Jul 2011.

IS Codes

- 1. IS 800 -2007, General Construction in Steel, Code of Practice.
- 2. SP6-1: ISI Hand Book of Structural Engineers, Part -I

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	1	2	2			1	1	1				2	
CO 2	2	1	3	2			1		1				2	
CO 3	1	1	3	1		1							1	
CO 4	1	1	3	1		1							1	
CO 5	3	1	3	3	1	1							2	
Total	9	5	14	9	1	3	2	1	2				8	
Scaled Value	2	1	3	2	1	1	1	1	1	0	0	0	2	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sen	neste	r	:	:										
Cou	ırse (Code	:	: X	KCEE09									
Сог	irse I	Name		: P	RESTRESSE	D CON	CRETE	STRUC	CTURES.					
Pre	requ	isite	:	: D	DESIGN OF C	ONCRE	ETE STI	RUCTU	RES					
	L	Т	Р	С		С	Р	Α		L	Т	Р	H	
	3	0	0	3		2	0.5	0.5		3	0	0	3	
Coι	ırse (Objec	tives		-				4					

- To introduce the concept of prestressing, methods and advantages.
- Todesign the prestressed concrete structures subjected to flexure, shear, tension and compression.
- To acquire knowledge about the concept of circular prestressing and its application.

Course be able	<i>Outcome: After the completion of the course, students will to</i>	Domain C or P or A	Level
CO1	Understand the need of the prestressed concrete and the methods of prestressing.	Cognitive	Understand
CO2	Identify and apply the design codes relevant for the design of prestressed concrete members	Cognitive Psychomotor	Understand Set
CO3	Accomplish the design calculation to predict circular prestressing behaviour of prestressed concrete structures.	Affective	Respond
CO4	Understand the behaviour of composite section and analyse the stress under different conditions.	Cognitive	Understand
CO5	Analyse the behaviour of statically indeterminate structures for the primary and secondary moments.	Cognitive	Analyse

UNIT I	INTRODUCTION – THEORY AND BEHAVIOUR	9
	Basic concepts – Advantages – Materials required – Systems and methods of prestressing –Analysis of sections by Stress concept, Strength concept and Load balancing concept - Effect of tendon profile on deflections – Factors influencing deflections – Calculation of short term and long term deflections –Losses of prestress.	
UNIT II	DESIGN OF MEMBERS.	9
	Behaviour of flexural members, determination of ultimate flexural strength – Various Codal provisions - Design for shear, bond and torsion,Design of Tension member, Design of Compression member. Stress distribution in end block-Design of anchorage zone reinforcement.	
UNIT III	CIRCULAR PRESTRESSING	9
	Prestressed Concrete Pipes- Advantages, Loads - Design of cylinder and non-cylinder pipes.Prestressed Concrete Tanks-Choice of types of tanks	
UNIT IV	COMPOSITE CONSTRUCTION	9
	Types of composite Construction - Analysis of stresses – Differential Shrinkage - Estimation of Deflection.Partialprestressing - its advantages and applications.	
UNIT V	CONTINUOUS BEAMS	9
	Analysis of continuous beams - Methods of achieving continuity - concept of linear transformations, concordant cable profile and cap cables.	

L	Т	Р	Total
45	0	0	45

- 1. Krishna Raju. N, Prestressed Concrete, Tata McGraw Hill Publishing Co. Ltd, New Dehi, 2012
- 2. Pandit.G.S. and Gupta.S.P., "Prestressed Concrete", CBS Publishers and Distributers Pvt. Ltd, 2012.
- 3. Libby J.R., Modern Prestressed Concrete, 3e, CBS Publishers & Distributors, New Delhi, 2007.

REFERENCE BOOKS

- 1. Lin T.Y. and Ned.H.Burns, "Design of prestressed Concrete Structures", Third Edition, Wiley India Pvt. Ltd., New Delhi, 2013.
- 2. Ramaswamy G.S., Modern prestressed concrete design, Arnold Heinimen, New Delhi.
- 3. David A.Sheppard, William R. and Philips, Plant Cast precast and prestressed concrete A design guide, McGraw Hill, New Delhi,2012..

IS Codes

- 1. IS1343:2012, Code of Practice for Prestressed Concrete, Bureau of Indian Standards, New Delhi, 2012
- 2. IS 3370-3 (1967): Code of Practice Concrete structures for the storage of liquids, Part 3: Prestressed concrete structures, Bureau of Indian Standards, New Delhi, 2008
- 3. IS 3370-4 (1967): Code of practice for concrete structures for the storage of liquids, Part 4: Design tables, Bureau of Indian Standards, New Delhi, 2008

PO 10 PSO2 S c PSO1 P02 POI PO D **CO 1 CO 2 CO 3 CO 4 CO 5** Total Scaled Value

Γ	Note:	Total	0	1-5	6-10	11-15
		Scaled value	0	1	2	3
		Relation	No	Low	Medium	High

Sen	iestei	•	:	:												
Cou	ırse (Code	:	X	CEE10											
Cou	irse N	Name	:	B	RIDGE	ENGI	NEERI	NG								
Pre	requi	isite	:		-	-		1	1	1						7
	L	Т	Р	C		_	С	Р	Α	-		L	Т	Р	H	_
	3	0	0	3			3	0	0			3	0	0	3	
Cou	irse (•						_								
		-			ith desig	-	-	-		-	idges.					
			-	-	estressed ostructur				-							
Соц			-		the com		-	-		-	Domai	n	С		Lev	el
	ible to			-9			<i>oj</i> 1112	,				or A			201	•-
CO	1	Unde	rstand	d the	compone	ents of l	oridges				Cogniti	ve		Unde	erstan	d
CO	2	Asses	ss the	behay	vior of v	arious l	oridges.				Cogniti	ve		Anal	yse	
CO	3	Desig	gn the	steel	and con	crete bi	ridges				Cogniti	ve		Crea	te	
CO		Desig	gn the	Cabl	e and su	spensio	n bridg	es			Cogniti			Crea		
CO		-			ructure	of bridg	ges.				Cogniti	ve		Crea	te	
	URS					т										0
UN	IT I				JCTION		P		1 0		, Variou		C	D 1	C	9
]	Inves IRS	tigatio Loadi	on and P ng, AA	'lanning SHTO	. Desig Loadir	n Loads	for Brid d Load,	dges – , Long	rainage, Dead Lo gitudinal tion and	oad, I force	Live I es, C	Load, entrif	IRC ugal	loading,
UN	IT II				OF REI											9
			-		nciples eck slab				Ũ		igeaud o Bridge	curve	s - C	Courbo	on's t	heory -
UN	IT II	[DES	IGN	OF PRI	ESTRE	SSED	CONCE	RETE B	RIDG	ES					9
		1	memł	ber - on for	Concret	e cove	r and s	pacing	of pre-s	tressin	einforcen ig steel s - analy	slend	er be	ams	- ana	lysis of
UN	IT IV	7]	DESI	GN (OF STE	EL BR	IDGES	5								9
				luctio d brid		el bridg	es: Plat	e girder	bridge,	truss t	oridge, su	ıspen	sion o	cable	bridg	e, cable
UN	IT V]	BEA	RING	S AND	SUBS	FRUC	FURES,	QUAL	ITY C	CONTRO)L9 I	Hrs.			9
		-	- Typ and a	es of butme	foundati ents, bed	ons, Pi blocks	ers and	abutme	nts- For	ces on	ection of piers an y consid	d abu	itmen	ts, De	esign	of piers
					provision			-			-		-	-		-

L	Т	Р	Total
45	0	0	45

- 1. JohnsonVictor.D, "Essentials of Bridge Engineering", Oxford & IBH, 2009.
- 2. Krishnaraju.N, "Prestressed Concrete bridges", CBS Publishers, 2012
- 3. Ponnuswamy.S "Bridge Engineering", Tata McGrawHill, 2007.

REFERENCE BOOKS

- 1. Jagadeesh T.R. and Jayaram .M.A., "Design of Bridge Structures", Prentice Hall of India Pvt Ltd., 2004.
- 2. V. K. Raina, "Concrete Bridges Practice Analysis, Design and Economics", Shroff Publications, New Delhi 2nd Ed. 2005.
- 3. Vazirani, Ratwani and Aswani, "Design of Concrete Bridges", Khanna Publishers, 2ndEd. 2008.

	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3	3	2	1		1	1		1	1			1	2
CO 2	1	3	2			1	1		1	1			1	2
CO 3	2	2	3	2		1	1		1	1		1	3	2
CO 4	2	2	3	2		1	1		1	1		1	3	2
CO 5	2	2	3	2		1	1		1	1		1	3	2
Total	10	12	13	7	0	5	5	0	5	5	0	3	11	10
Scaled Value	2	3	3	2	0	1	1	0	1	1	0	1	3	2

	Note:	Total	0	1-5	6-10	11-15
_		Scaled value	0	1	2	3
		Relation	No	Low	Medium	High

Semester **Course Code**

XCEE11

:

:

:

Course Name FOUNDATION ENGINEERING :

Prerequisite

L	Т	Р	С	С	Р	Α	L	Т	Р	Η
3	0	0	3	2	0	1	3	0	0	3

Course Objectives

To impart knowledge on common method of sub soil investigation •

To acquires the capacity to select and design a suitable foundation, control settlement of foundation •

•	To design proper foundation for dynamic and earthquake force	es	
Course	Outcome: After the completion of the course, students will	Domain C	Level
be able	to	or P or A	
CO1	Learn about types and purposes of different foundation systems and structures	Cognitive	Understand
CO2	Explain about the systematic methods for designing foundations	Cognitive	Understand
CO3	Evaluate the feasibility of foundation solutions to different types of soil conditions considering the time effect on soil behaviour.	Cognitive Affective	Understand Respond
CO4	Apply necessary theoretical background for design and construction of foundation systems.	Cognitive Affective	Create Respond
CO5	Assess the load carrying capacity of deep foundation for any kind of soil including group efficiency and negative friction	Cognitive Affective	Create Respond

COURSE CONTENT

UNIT I	Soil investigation, Analysis and design of foundations	10
	Planning for subsurface exploration - Methods of exploration - Geophysical exploration - Soil sampling and samplers - In-situ tests - Soil investigation report	
	Functions and requisites- Different types - choice of foundation type – general principles of design.	
UNIT II	Bearing capacity and Shallow foundations	8
	Bearing capacity - types of failures - Prandtl's and Terzaghi's bearing capacity analysis - Bearing capacity based on building codes, SPT, CPT values, etc.	
UNIT III	Deep foundation, retaining walls, cuts and sheet piles	10
	Deep foundation - piles - types - load carrying capacity of pile - static and dynamic formula - pile load test - penetration test - pile groups - Efficiency - Feld's rule - Converse Labarre formula, under reamed piles, Introduction to piers, caissons, Coffer	

dams - Design and construction of well foundation, piers etc.

Types of earth pressures - Different theories of earth pressures - Rankine and Coulomb theory - Friction circle method - Terzaghi's analysis Different types of retaining structures - Stability analysis of rigid walls - Design of anchored sheet piles

UNIT IV Ground movements due to construction; analysis and design of excavations

Contact pressure distribution - settlement analysis - Settlement of piles and pile groups - Negative skin friction- Types of settlement – control - Calculation of settlements -Codal provision - Techniques of ground improvement - Foundations in swelling soil -Foundations in collapsible soil - Use of soil reinforcement

UNIT V Design of Machine Foundations, Design of Foundations under Earthquake Conditions

Introduction - Free and forced vibration - Lysmer's method- Dynamically loaded foundations - Dynamic soil properties - Vibration isolation - Different methods of analysis for earthquake conditions - Pseudo-static method of design - Effect of earthquake forces on various foundations

L	Т	Р	Total
45	0	0	45

7

10

TEXT BOOKS

1. Holtz R.D. and Kovacs, W.D, An Introduction to Geotechnical Engineering, Prentice Hall, NJ

- 2. Braja M. Das, Principles of Foundation Engineering, by, Cengage Learning
- 3. Singh A, Modern Geotechnical Engineering, 3rd Ed., CBS Publishers, New Delhi, 1999.
- 4. Punmia, B.C. Soil Mechanics and Foundation Engineering, Laxmi Publications Pvt. Ltd., New Delhi, 1995.

REFERENCE BOOKS

- 1. N. Som, Theory and Practice of Foundation Design, Prentice Hall, New Delhi, 2003.
- 2. Principles of Geotechnical Engineering, by Braja M. Das, Cengage Learning
- 3. Taylor D.W., Fundamentals of Soil Mechanics, Asia Publishing House, 1948.
- 4. Terzaghi K. and R. B. Peck, Soil Mechanics in Engineering Practice, John Wiley, 1967.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	3	3		1	3			2	1		1	1	2	1
CO 2	2	3	2	1	3	1			1	1	1	2	1	1
CO 3	2	2		1				1			1		1	1
CO 4	3	2	1		1	2	1		1	1			1	1
CO 5	2	1			1								1	1
Total	12	11	3	3	8	3	1	3	3	2	3	3	6	5
Scaled Value	3	3	1	1	2	1	1	1	1	1	1	1	2	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester Course Code

: : XCEE12

:

Course Name : ENVIRONMENTAL GEOTECHNOLOGY

Prerequisite

L	Т	Р	С	С	Р	Α	L	Τ	P	Η
3	0	0	3	2	0.5	0.5	3	0	0	3

Course Objectives

- Have an exposure to interdisciplinary issues pertaining to environment and geotechnical engineering
- Explain the effects of pollutants in soil properties
- Acquiring the knowledge of the problematic soil deposits under varying environmental conditions
- Awareness about the adverse effects of soil and ground water contaminants
- Analyze and apply the various techniques for remediation of the contaminants

Course	e Outcome: After the completion of the course, students	Domain	Level
will be	able to	C or P or A	
CO1	Analyse the soil contamination concentration and type	Cognitive	Understand
CO2	Be trained to develop sustainable and environmentally	Cognitive	Understand
	sound solutions for geotechnical problems	Affective	Respond
CO3	Solving environmental engineering problems unique to	Cognitive	Understand
	several soil and subsurface conditions.	Psychomotor	Guided Response
CO4	Monitor and analyse quality of ground water	Cognitive	Create
		Psychomotor	Guided Response
CO5	Suggest the steps to remediation of soil and groundwater	Cognitive	Create
			Respond

COURSE CONTENT

UNIT I FUNDAMENTALS OF GEOENVIROMENTAL ENGINEERING

Scope of geo environmental engineering - multiphase behaviour of soil – role of soil in geo environmental applications- sources and type of ground contamination sources, production and classification of waste– health risks posed by heavy metals and emerging pollutants. Impact of climate change, energy resources, case histories on geo environmental problems.

9

8

UNIT II GROUNDWATER CONTAMINATION

Water quality standards - Sources of contamination- Soil-water-contaminant interactions and its implications – Hydro chemical behavior of contaminants - Trace metals - Trace non metals - Nitrogen, organic substances - Measurement of parameters - Velocity - Dispersivity - chemical partitioning- Factors effecting retention and transport of contaminants.

UNIT III REMEDIATION OF CONTAMINANTS FROM SOIL AND GROUND WATER 10

contaminant transformation: sorption, biodegradation, ion exchange, precipitation ex situ and insitu remediation – solidification, bio–remediation, soil washing, electro kinetics, soil heating, verification, bio venting, Ground water remediation – pump and treat, air sparging, reactive well-Insitu remediation –Case studies

UNIT IV SOLID WASTE DISPOSAL AND STABILIZATION

Hazardous waste control and storage system- mechanism of Stabilization, incinerationorganic and inorganic stabilization reutilization of solid waste for soil improvement. Design of landfill: CNS layer, leachate and air collection units

UNIT V ADVANCED SOIL CHARACTERIZATION

Site characterization – risk assessment of contaminated site -Contaminant analysis - water content and permeability measurements – electrical and thermal property evaluation —. Site selection for dumping

	L	Т	Р	Total	
	45	0	0	45	
TEXT BOOKS					

- 1. Rowe R.K., "Geotechnical and Geoenvironmental Engineering Handbook" Kluwer Academic Publications, London, 2000.
- 2. Reddi L.N. and Inyang, H. I., "GeoenvironmentalEngineering, Principles and Applications" Marcel Dekker Inc. New York, 2000.
- 3. Yong, R. N., "Geoenvironmental Engineering, Contaminated Soils, Pollutant Fate, and Mitigation" CRC Press, New York, 2001.
- 4. Sharma H.D. and Reddy K.R., "GeoenvironmentalEngineering:Site Remediation, Waste Containment, and Emerging Waste Management Technologies" John Wiley & Sons, Inc., USA, 2004. 5. Zheng C., "Applied Contaminant Transport Modeling", John Wiley & sons, First edition
- 5. Hsai-Yang Fang, "Introduction to Environmental Geotechnology", CRC Press, New York
- 6. Berkowitz, B. Dror, I. and Yaron, B., "Contaminant Geochemistry" Springer, Germany, 2008.
- 7. Mohamed, A. M. O., "Principles and Applications of Time Domain Electrometry in Geoenvironmental Engineering" Taylor and Francis, New York, 2006.

mapping of) 8											
	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1		3	2	3			3		2					3
CO 2			1			3	2		2	1				2
CO 3			1	2			3		3	1				2
CO 4			3	3			3		3					3
CO 5			3	3			3		3					3
Total	0	3	10	11	0	3	14	0	13	2	0	0	0	13
Scaled Value	0	1	2	2	0	1	3	0	3	1	0	0	0	3
Note:		Total		0	1.	-5	6-	10	11-	-15]			

Mapping of CO with PO's

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

10

	L	Т	Р	С		С	Р	Α	L	Т	Р
Pre	requ	isite	;	:							
Cou	irse	Nam	e :	G	EOTECHNIC	CAL DE	SIGN				
Cou	irse	Code	e :	X	CEE13						
Sen	ieste	er	:	:							

Course Objectives

• To apply the knowledge of soil properties

- To acquire knowledge on geotechnical structures and design principles
- To select proper methods of construction for geotechnical structures

	e Outcome: After the completion of the course, students able to	Domain C or P or A	Level
CO1	Explain the various investigation specifications as per the infrastructure be build on the proposed site	Cognitive	Understand
CO2	Evaluate the properties of materials required for the constructing a desired geotechnical infrastructure	Cognitive Affective	Understand Respond
CO3	Understand the design concepts of various foundation systems	Cognitive Affective	Understand Guided Response
CO4	Classify the design principles of dams, pavement and retaining walls	Cognitive Affective	Create Guided Response
CO5	Design a underground storage system, buried structures, Geosynthetics	Cognitive Affective	Create Respond

Η

UNIT I	Subsurface site evaluation and geotechnical structures8
	Planning for subsurface exploration - Methods of exploration - Geophysical exploration - Soil sampling and samplers - In-situ tests - Soil investigation report
	Functions and requisites of geotechnical structures - Different types - choice of types - general principles of design - Grouting techniques - Types of grout
UNIT II	Integrated design of retaining walls 10
	Introduction - Types of earth pressures - Different theories of earth pressures - Rankine and Coulomb theory - Friction circle method - Terzaghi's analysis Different types of retaining structures - Stability analysis of rigid walls - Design of anchored sheet piles - Lateral pressure on sheeting in braced excavation - stability against piping and bottom heaving - Earth pressure around tunnel lining, shaft and silos.
UNIT III	Pavements and materials for airports, highways, harbor, etc.10
	Material characterization for analytical pavement design – CBR and stabilometer tests – Resilient modulus – Fatigue subsystem – failure criteria for bituminous pavements – IRC design guidelines. Pavements types – Approaches to pavement design – vehicle and traffic considerations – behaviour of road materials under repeated loading – Stresses and deflections in layered systems.
UNIT IV	Design of dams and other water retaining structures10
	Design consideration, Factors influencing design - Types of earth and rockfill dams - Design details - Provisions to control pore pressure - Design consideration - Factors influencing design - Types of earth and rockfill dams - Design details, Provisions to control pore pressure

- Special design problems - Slope protection, Filter design, Foundation treatment - Earth dams on pervious soil foundation - Treatment of rock foundation - Construction Techniques - Quality control and performance measurement - Applications of Geosynthetics in earth and rockfill dams

UNIT V Underground storage system, buried structures, Geosynthetics

Design & detailing of Underground Rectangular and Circular Water Tank – buried pipelines - Principles, Concepts and Mechanisms of reinforced earth - Main types of geosynthetics charactersitics and manufacturing processes - Main functions of geosynthetics and applications in which these functions are most relevant - Principles of design with geosynthetics - Most important geosynthetics characterization tests.

L	Т	Р	Total
45	0	0	45

7

TEXT BOOKS

- 1. Analysis and Design of Substructures: Limit State Design by Swami Saran
- 2. Braja M. Das, Principles of Foundation Engineering, by, Cengage Learning
- 3. Singh A, Modern Geotechnical Engineering, 3rd Ed., CBS Publishers, New Delhi, 1999.
- 4. Punmia, B.C. Soil Mechanics and Foundation Engineering, Laxmi Publications Pvt. Ltd., New Delhi, 1995.
- 5. IS: 3370-Indian Standard code of practice for concrete structures for storage of liquids, Bureau of Indian Standards, New Delhi

REFERENCE BOOKS

- 1. AASHTO. (1990). AASHTO Guidelines for Pavement Management Systems, American Association of State Highway and Transportation Officials, Washington DC.
- 2. Koerner, R.M. and Welsh, J.P., Construction and Geotechnical Engineering using Synthetic Fabrics, John Wiley, 1990.
- 3. Robert M. Koerne. Designing with geosynthetics. 5th. New York: Prentice Hall, 2005. ISBN 978-0131454156.
- 4. IS: 12966(Part 2)-1990 "Code of practice for galleries and other openings in dams" (Part 2: Structural design)
- 5. IS: 13551-1992 "Structural design of spillway piers and crest-criteria"

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	1	3		1	1			2	1		1	1	2	1
CO 2	2	1	2	1	1	2				1	1	2	1	1
CO 3	1	2		1				1		1	1		1	1
CO 4	2	2	2		1	2	1		1	1				1
CO 5	2	1			1								1	
Total	8	9	4	3	4	4	1	3	2	3	3	3	5	4
Scaled Value	2	2	1	1	1	1	1	1	1	1	1	1	1	1
Note:		Total	()	1.	-5	6-	10	11	-15				

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	:					
Course Code	:	XCEE14				
Course Name	:	EARTHQUAK	E ENGI	NEERI	NG	
Prerequisite	:					
	P C	2	С	Р	Α	

	Т	Р	С	С	Р	Α	L	Т	Р	Η
3	0	0	3	2.5	0	0.5	3	0	0	3

Course Objectives

3

- To introduce the basics of Earthquake Engineering.
- To teach the analytical methods for evaluation of seismic resistance of buildings.
- To introduce the engineering seismology, building geometrics & characteristics and structural irregularities.

	Outcome: After the completion of the course, students able to	Domain C or P or A	Level
CO1	Describe the basis of vibrations	Cognitive	Understand
CO2	Analyse SDOF and MDOF systems with distributed mass for continuous system.	Cognitive	Understand
CO3	Quantify the effect of seismic waves.	Cognitive Affective	Understand Receiving
CO4	Understand the concept of response spectrum and application of structural dynamics.	Cognitive	Understand
CO5	Able to design of Earthquake resistant structures with codal provisions	Cognitive	Understand

COURSE CONTENT

UNIT I THEORY OF VIBRATIONS

Concept of inertia and damping – Types of Damping – Difference between static forces and dynamic excitation – Degrees of freedom – SDOF idealisation – Equations of motion of SDOF system for mass as well as base excitation – Free vibration of SDOF system – Response to harmonic excitation – Impulse and response to unit impulse – Duhamel integral.

9

9

9

9

UNIT II MULTIPLE DEGREE OF FREEDOM SYSTEM

Two degree of freedom system – Normal modes of vibration – Natural frequencies – Mode shapes - Introduction to MDOF systems – Decoupling of equations of motion – Concept of mode superposition (No derivations).

UNIT III ELEMENTS OF SEISMOLOGY

Causes of Earthquake – Geological faults – Tectonic plate theory – Elastic rebound – Epicentre – Hypocentre – Primary, shear and Raleigh waves – Seismogram – Magnitude and intensity of earthquakes – Magnitude and Intensity scales – Spectral Acceleration - Information on some disastrous earthquakes.

UNIT IV RESPONSE OF STRUCTURES TO EARTHQUAKE

Response and design spectra – Design earthquake – concept of peak acceleration – Site specific response spectrum – Effect of soil properties and damping – Liquefaction of soils – Importance of ductility – Methods of introducing ductility into RC structures.

UNIT V DESIGN METHODOLOGY

Design as per the codes IS 1893, IS 13920 and IS 4326 — Base isolation techniques – Vibration control measures – Important points in mitigating effects of earthquake on structures.

L	Т	Р	Total
45	0	0	45

9

TEXT BOOKS

- 1. David Dowrick ., "Earthquake Resistant Design And Risk Reduction" John Wiley & Sons, 2011
- 2. Kavitha S., Damodarasamy S. R. "Basic of Structural Dynamics and Aseismic Design" PHI Learning Private Limited publishers,2009.
- 3. Anil k chopra " Dynamics of structures '' Theory and application to Earthquake Engineering, Prentice Hall.2012

REFERENCE BOOKS

- 1. George G.Penelis and AndreasJ.Kappos,Earthquake Resistant Concrete Structures, Taylor and Francis,.London,UK,2014
- 2. Shashikant K. Duggal "Earthquke resistant design of structures" Oxford University Press, 2013
- 3. Mario Paz, William Leigh "Structural Dynamics-Theory & Computattions" Kluwar Academic Publishers, USA, 2004

IS Codes

- 1. IS 1893(Part 1):2002, Criteria for Earthquake Resistant Design of Structures
- IS 13920 2016 Ductile Design and Detailing Of Reinforced Concrete Structures Subjected to Seismic Forces
- 3. IS 4326 2013 Earthquake Resistant Design and Construction of Buildings

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3	2	2			1				1			2	
CO 2	2	3											1	
CO 3	2	1	1			2				1			1	1
CO 4	1	2			1		1	1	1	1	1	1		
CO 5	2		3		1		1	1				1	2	1
Total	10	8	6		2	3	2	2	1	3	1	2	6	2
Scaled Value	2	2	2	0	1	1	1	1	1	1	1	1	2	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester : Course Code :

Course Name : DESIGN OF HYDRAULIC STRUCTURES

XCEE15

Prerequisite :

L	Т	Р	С	С	Р	Α	L	Т	Р	Η
3	0	0	3	2	0	1	3	0	0	3

Course Objectives

- To impart knowledge regarding tank irrigation and impounding structures
- To learn the capacity and design of canal transmission and regulation structures.
- To study on importance of irrigation water management structures.

Course	e Outcome: After the completion of the course, students	Domain	Level
will be	able to	C or P or A	
CO1	Design the Tank irrigation structure and draw the	Cognitive	Create
	components.	Affective	Respond
CO2	Design of dams and energy dissipation structures	Cognitive	Create
		Affective	Guided Response
CO3	Design and plot canal transmission structures	Cognitive	Create
		Affective	Guided Response
CO4	Analyse and design canal regulation structures	Cognitive	Create
		Affective	Respond
CO5	Develop strategies for water management in irrigation	Cognitive	Understand

COURSE CONTENT

structures.

TANK IRRIGATION STRUCTURES	9
Design and Drawing of Tank surplus weirs–Tank sluices weirs on pervious foundations - Percolation ponds	
IMPOUNDING STRUCTURES	9
Design of Gravity Dams - Earth dams- Spill ways - Energy dissipation devices	
CANAL TRANSMISSION STRUCTURES	9
Design and Drawing of Aqueducts – Siphon aqueducts – Super passage – Canal siphon – Canal drops – Notch type – Rapid type fall – Siphon well drops	
CANAL REGULATION STRUCTURES	9
Design of lined and unlined channels – Design and Drawing of Canal head works – Canal regulator – Canal escape	
	 Design and Drawing of Tank surplus weirs–Tank sluices weirs on pervious foundations - Percolation ponds IMPOUNDING STRUCTURES Design of Gravity Dams – Earth dams– Spill ways – Energy dissipation devices CANAL TRANSMISSION STRUCTURES Design and Drawing of Aqueducts – Siphon aqueducts – Super passage – Canal siphon – Canal drops – Notch type – Rapid type fall – Siphon well drops CANAL REGULATION STRUCTURES Design of lined and unlined channels – Design and Drawing of Canal head works –

UNIT V IRRIGATION WATER MANAGEMENT STRUCTURES

On farm development works – Structures for proportional field distribution-Drought management-Case study.

L	Т	Р	Total
45	0	0	45

- 1. Garg, S.K. Irrigation Engineering and Hydraulic Structures. Khanna Publishers, Delhi," 2008
- 2. Sharma R.K, "Irrigation Engineering and Hydraulic Structures", Oxford and IBH Publishing Co., New Delhi, 2016
- 3. N N Basak "Irrigation Engineering', Tata Mcgraw Hill publishing company limited, NewDelhi, 2007

REFERENCE BOOKS

- 1. Punmia, BC; and PandeBrijBansiLal, `Irrigation and Water Power Engineering', Delhi, Standard Publishers Distributors,2016
- 2. Sharma, SK; 'Principles and Practice of Irrigation Engineering', , Prentice Hall of India Pvt. Ltd. , New Delhi
- 3. Madan Mohan Das, Mimi Das Saikia, "Irrigation And Water Power Engineering", PHI Learning Private Limited, Delhi,2009

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3	2	1	3	2	2				2	1	1	3	2
CO 2	3	2		2	2	2				1	1	1	3	2
CO 3	3	2		3	2	2				1	1	1	3	2
CO 4	3	2		2	2	2				1	1	1	3	2
CO 5					3	2	2	1	1	2		1		1
Total	12	8	1	10	11	10	2	1	1	7	4	5	12	9
Scaled Value	3	2	1	2	3	2	1	1	1	2	1	1	3	2
Note:		Total	(0	1.	-5	6-	10	11-	-15				
	Scaled	value	(0	1	1	2	2		3				
	Re	lation	N	lo	Lo	ow	Med	lium	Hi	gh				

Semester

Course Code : XCEE16

:

Course Name : Basics of Computational Hydraulics

Prerequisite : Hydraulic Engineering

L	Т	Р	С	С	Р	Α	L	Τ	P	Η
2	1	0	3	2.5	0	0.5	2	1	0	3

Course Objectives

- Explain the structure of the 1D, 2D and 3D flow equations as representations of conservation laws
- Classify differential equations in terms of ODE /PDE and determine the nature of a given PDE
- Indicate the nature of the initial and boundary and apply the method of characteristics to solve equations
- Implement finite difference schemes to solve ordinary and partial differential equations

Course	e Outcome: After the completion of the course, students	Domain	Level
will be	able to	C or P or A	
CO1	Simulation of the flow of water, together with its consequences	Cognitive	Understand
CO2	Apply hydrodynamic techniques and 1 dimensional expansions and contractions	Cognitive	Understand
CO3	Understand linearized method of characteristics	Cognitive	Understand
CO4	Able to understand forms of conservation and applications	Cognitive Affective	Understand
CO5	Do different flow modeling using software	Cognitive	Understand

COURSE CONTENT

UNIT I INTRODUCTION

Significance of computational hydraulics, discrete forms of the laws of construction of mass, momentum and energy. Examples of free surface flows. Derivation of governing equations for flow and transport in surface and sub-surface (saturated and unsaturated flow)

9

9

9

9

UNIT II 1-D EXPANSIONS

lateral inflow's 1-D expansions and contractions, homogeneous and stratified fluid flows. Equations for reactive transport; Coupled surface and sub-surface flow models; Basics of finite difference, finite element and finite volume methods

UNIT III METHOD OF CHARACTERISTICS

Characteristics and invarients, regions of state, computation of hydraulic jump, indeterminary conditions, the linearised method of characteristics.consistency, stability, convergence, order of accuracy computational efficiency application of numerical methods for solving flow and transport equations,

UNIT IV FORMS OF CONSERVATION LAWS

Difference forms of conservation laws, weak solutions applications, storm-sewer networks, diffusion problems, river morphotogy, linear wave propagation. fully coupled and iteratively coupled models; Model simplification, Parameter estimation (Model calibration and validation),

UNIT V COMPUTATIONAL FLUID DYNAMICS (CFD)

Numerical methods – Finite difference method with example 1-D horizontal flow. software for three-dimensional turbulent flow modeling, Software for sub-surface flow simulation.

L T P Total 45 0 0 45

TEXT BOOKS

- 1. Brebbia, C.A. and Ferrante, "A.J. Computational Hydraulics" Butterworth & Company (Publishers) Ltd., London, 1983
- 2. Chaudhary, M.H, "Applied Hydraulic Transients" (2 nd Edition) Van Nostrand Reinhold Company Inc., New York, 1987

REFERENCE BOOKS

- 1. Mahmood, K. and Yeyjevieh, V, "Unsteady Flow in Open Channels (Vol. I & II)" Water Resources Publications, Fort Collins, Colorado, U.S.A., 1975
- 2. Michael B. Abbott, Anthony W. Minns "Computational Hydraulics" Routledge, 2017
- 3. J. A. Cunge, Michael Barry Abbott, "Engineering Applications of Computational Hydraulics" Pitman Advanced Publishing program.
- 4. Cornelis B. Vreugdenhil, "Computational Hydraulics: An Introduction", Springer Science & Business Media, 2012
- 5. Michael B. Abbott, Anthony W. Minns, "Computational Hydraulics" 1994 Routledge, 2017

	POI	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	3	1		2						_				
CO 2	3	1												
CO 3	3	1		2										
CO 4	3	1		2										
CO 5	3	1		2										
Total	15	5	0	6	0	0	0	0	0	0	0	0	0	0
Scaled Value	3	1	0	2	0	0	0	0	0	0	0	0	0	0
Note:		Total	()	1.	-5	6-	10	11	-15				
	Scaled	value	()	1	1		2	,	3				
	Re	lation	N	ю	Lo	OW	Med	lium	Hi	igh				

Semester Course Code

: : XCEE17

Course Name : URBAN HYDROLOGY AND HYDRAULICS

Prerequisite

L 3

Τ	P	С	С	Р	Α	L	Τ	Р	Η	
0	0	3	2	0	1	3	0	0	3	

Course Objectives

:

At the end of the course the student will be able to

- Develop intensity duration frequency curves for urban drainage systems.
- Develop design storms to size the various components of drainage systems.
- Apply best management practices to manage urban flooding.
- Prepare master drainage and hydraulics plan for an urbanized area.

Course	Outcome: After the completion of the course, students	Domain	Level
will be	able to	C or P or A	
CO1	Understand the importance of short duration rainfall runoff data for urban hydrology studies	Cognitive	Understand
CO2	Understand the importance of short duration rainfall runoff data for urban hydrology studies	Cognitive	Understand
CO3	Understand the importance of short duration rainfall runoff data for urban hydrology studies	Cognitive Affective	Understand Respond
CO4	Learn some of the best management practices in urban drainage.	Cognitive	Understand
CO5	Understand the concepts of preparation master urban drainage system.	Cognitive Affective	Understand Respond

COURSE CONTENT

UNIT I	PRECIPITATION ANALYSIS:
--------	-------------------------

Urbanization and its effect on water cycle – urban hydrologic cycle – trends in urbanization – Effect of urbanization on hydrology. Importance of short duration of rainfall and runoff data, methods of estimation of time of concentration for design of urban drainage systems, Intensity-Duration -Frequency (IDF) curves, design storms for urban drainage systems.

9

9

9

UNIT II APPROACHES TO URBAN DRAINAGE:

Time of concentration, peak flow estimation approaches, rational method, NRCS curve number approach, runoff quantity and quality, wastewater and storm water reuse, major and minor systems.

UNIT III HYDROLOGIC DESIGN:

Analysis of Precipitation Data, Construction of IDF curves, Estimation of Evaporation and Evapotranspiration, Determination of Yield from A Catchment, Derivation of Unit Hydrograph, Estimation of Design Flood, Regional Flood Frequency Analysis, Hydrologic and Hydraulic flood routing, Derivation of Synthetic Unit Hydrograph.

UNIT IV URBAN HYDRAULICS:

Sources and distribution of water in urban environment, including surface reservoir requirements, utilization of groundwater, and distribution systems. Analysis of sewer systems and drainage courses for the disposal of both wastewater and storm water. Pumps and lift stations. Urban planning and storm drainage practice.

UNIT V ANALYSIS AND MANAGEMENT:

Storm water drainage structures, design of storm water network- Best Management Practices-detention and retention facilities, swales, constructed wetlands, models available for storm water management.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. 'Manual on Drainage in Urbanized area 'by Geiger W. F., J Marsalek, W. J. Rawls and F. C. Zuidema, (1987 2 volumes), UNESCO,
- 2. 'Urban Hydrology' by Hall M J (2015), Elsevier Applied Science Publisher.
- 3. 'Hydrology Quantity and Quality Analysis' by Wanielista M P and Eaglin (2016), Wiley and Sons.
- 4. 'Urban Hydrology, Hydraulics and Storm water Quality: Engineering Applications and Computer Modeling' by Akan A.O and R.L. Houghtalen (2016), Wiley International.

REFERENCE BOOKS

- 1. 'Storm water Detention for Drainage' by Stahre P and Urbonas B (2000), Water Quality and CSO Management, Prentice Hall.
- 2. 'Urban water cycle processes and interactions' by Marsalek et al (2016), Publication No. 78, UNESCO, Paris (http://www.bvsde.paho.org/bvsacd/cd63/149460E.pdf)
- 3. 'Frontiers in Urban Water Management Deadlock or Hope' by Maksimovic C and J A Tejada-Guibert (2015), IWA Publishing.

		GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1		3	2			2							2
CO 2		3	2			2							2
CO 3		3	2	1	2	2							2
CO 4		3	2	1	2	2							2
CO 5		3	2	1		2			1			2	2
Total		15	10	3	4	10	0	0	1	0	0	2	10
Scaled Value	ıe	3	2	1	1	2	0	0	1	0	0	1	2
Note:		Fotal	0		1-5		6-10		11-15				
L	Scaled v	value	0		1		2		3				
	Rela	ation	No		Low		Medium		High				

Mapping of CO with GA's

Semester : Course Code : XCEE18

:

Course Name : GROUNDWATER ENGINEERING

Prerequisite

L	Т	Р	С	С	Р	Α	L	Τ	Р	Η
3	0	0	3	2	0	1	3	0	0	3

Course Objectives

At the end of the course the student will be able to

- Water quality criteria and standards, and their relation to public health, environment and urban water cycle;
- Water quality concepts and their effect on treatment process selection;
- The interaction of water quality and the materials being used;
- Hydraulic concepts and their relationship to water transport in treatment plants, pipelines and distribution networks;
- Be able to define and evaluate project alternatives on basis of chosen selection criteria;
- Water quality engineering within a watershed context.

Course	e Outcome: After the completion of the course, students	Domain	Level
will be	able to	C or P or A	
CO1	Relate and Interpret the Development and evolution of ecosystems.	Cognitive	Understand
CO2	Explain and Apply Fluvial Ecosystem Diversity.	Cognitive	Understand
CO3	Classify and Develop the stream water chemistry.	Cognitive	Understand
		Affective	Respond
CO4	Classify and Dissect necessity of Water quality models.	Cognitive	Understand
CO5	List and respond to Formulation of anisotropic and non- homogenous flow of groundwater.	Cognitive Affective	Understand Respond

COURSE CONTENT

UNIT I INTRODUCTION:

Development and evolution of ecosystems – Principles and concepts – Energy flow and material cycling – productivity – Classification of Eco technology – ecological engineering- Classification of systems – Structural and functional interactions of environmental systems – Mechanisms of steady-state maintenance in open and closed systems- Modeling and Eco technology – Classification of ecological models – Applications- Ecological economics- Self-organizing design and processes.

UNIT II FLUVIAL ECOSYSTEMS:

Fluvial Ecosystem Diversity- The Water Cycle – Stream flow- Flow Variation- The Stream Channel- Sediments and their Transport- Fluvial Processes along the River Continuum.

9

UNIT III STREAMWATER CHEMISTRY:

Dissolved Gases -Major Dissolved Constituents of River Water-Variability in ionic concentrations -The dissolved load -Chemical classification of river water-The Bicarbonate Buffer System-Influence of Chemical Factors on the Biota-Variation in ionic concentration-Salinization -Effects of acidity on stream ecosystems.

UNIT IV WATER QUALITY:

Water quality models – Historical development – Non point source pollution- Mass balance equation – Streeter - Phelps Equation – Modification to Streeter – Phelps Equation – Waste load allocations – Dissolved oxygen in Rivers and estuaries; Lake Water Quality Models; Models for Nitrogen, Bacteria, Phosphate and toxicants - Ground Water Quality Modeling - Contaminant solute transport equation, Numerical methods legislations for water quality.

UNIT V GROUNDWATER MODELING:

Formulation of anisotropic and non-homogenous flow of groundwater, finite difference methods for solving groundwater flow problems, regional groundwater flow modeling.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Chow, V.T., Maidment, D.R. and Mays, L.W. (2010),"Applied Hydrology", Tata McGraw Hill Edition
- 2. Warren Viessman, Jr. and G L Lewis, (2018), "Introduction to Hydrology", Prentice Hall India Pvt. Ltd., New Delhi
- 3. Davis, S.N. and De Weist, R.J.M. (2012), "Hydrogeology", John Wiley & Sons, N York
- 4. Watters, G.Z, Analysis and control of pipe flow in pipes, Butter Worth Publishers, 2014.

REFERENCE BOOKS

- 1. Dandekar, M.M., and Sharma, K.N., (2013), Water Power Engineering, Vikas Publishing Company, New Delhi.
- 2. Stahre, P., Urbonas, B., (2014), "Stormwater Detention for Drainage, water quality and CSO Management", Prentice Hall, New Jersey.
- 3. McCuen R.H., Hydrologic Analysis and Design, Prentice Hall Inc. N York, 2015

	11 8		1				1		1	1		1		
			GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
C	D 1		2	3			2							2
C	0 2		2	2			3							2
C	03		3	2	1	2	2							2
C	D 4		3	2	1	2	2							2
C	O 5		3	2	1		2			1			2	2
To	otal		13	11	3	4	11	0	0	1	0	0	2	10
Sc	aled Valu	ıe	3	3	1	1	3	0	0	1	0	0	1	2
	Note:	r	Fotal	0		1-5		6-10		11-15				
	L	Scaled v	value	0		1		2		3				
		Rela	ation	No		Low		Medium		High				

Mapping of CO with GA's

9

9

Semeste	er	:	:											
Course	Code	e :	X	CEE19										
				VATER (nvironmo	-			ERING						
1101040					- III CIII I	mgmet	s	-	-		-	-		
L	Т	Р	С			С	Р	Α		L	Т	Р	Η	
3	0	0	3	1		2	0	1		3	0	0	3	
Course				1	L		1		1	L	I			

Course Objectives

- To understand the significance of Physio-chemical treatment for water and wastewater
- To recognize the principles of Physical treatment
- To acquire knowledge on Chemical Treatment
- To apply the principles of treatment methodologies and to design the Municipal water treatment plants

Course	Outcome: After the completion of the course, students	Domain	Level
will be	able to	C or P or A	
CO1	<i>Understand</i> the significance of Physio-chemical treatment for water and wastewater	Cognitive	Understand
CO2	Recognize the principles of Physical treatment	Cognitive	Understand
CO3	Acquire knowledge on Chemical Treatment	Cognitive	Understand Respond
		Affective	Respond
CO4	Apply the principles of treatment methodologies and to	Cognitive	Create
	design the Municipal water treatment plants	Affective	Respond
CO5	Apply the principles and to design the Industrial water treatment units	Cognitive Affective	Create Respond

UNIT I	POLLUTANTS IN WATER AND WASTE WATER	9
	Characteristics, Standards for performance - Significance of physico-chemical treatment – Selection criteria-types of reactor- reactor selection-batch-continuous type	
UNIT II	PRINCIPLES OF PHYSICAL TREAMENT	9
	Screening – Mixing, Equalization – Sedimentation – Filtration – Evaporation – Incineration – gas transfer – mass transfer coefficient Adsorption –Membrane separation, Reverse Osmosis, nano filtration, ultra filtration and hyper filtration	
UNIT III	PRINCIPLES OF CHEMICAL TREATMENT	9
	Coagulation flocculation – Precipitation – flotation solidification and stabilization – Disinfection, Ion exchange, Electrolytic methods, advanced oxidation /reduction – Recent Trends	
UNIT IV	DESIGN OF MUNICIPAL WATER TREATMENT PLANTS	9
	Selection of Treatment – Design of municipal water treatment plant units – Aerators – chemical feeding – Flocculation-clarifier–O&M aspects – case studies, Residue management – Recent Trends	

UNIT V DESIGN OF INDUSTRIAL WATER TREATMENT PLANTS

Design of Industrial Water Treatment Units- Selection of process – Design of softeners – Demineralisers –Reverse osmosis plants –Flow charts – Layouts –O&M aspects – case studies, Residue management – Upgradation of existing plants – Recent Trends.

L	Т	Р	Total
45	0	0	45

9

TEXT BOOKS

- 1. Rakesh Kumar and R.N. Singh,"Municipal Water and Wastewater Treatment" TERI publishers,2012
- 2. Gurucharan Singh," Water supply and Sanitary Engineering", Standard Publishers Distributors, 2009
- 3. Garg, S.K., "Environmental Engineering I & II", Khanna Publishers, New Delhi 2007
- 4. LinvilG.Rich, Unit operations of Sanitary Engineering, Tata Mcgraw Hill, New Delhi, 2007
- 5. Rangwala, "Water Supply and Sanitary Engineering PB,24/e, Charotar Publishing house Pvt. Ltd.-Anand, 2011

REFERENCE BOOKS

- 1. Metcalf and Eddy, "Wastewater Engineering, Treatment and Reuse", Tata McGraw Hill, New Delhi, 2003.
- 2. Qasim, S.R., Motley, E.M. and Zhu.G. "Water works Engineering Planning, Design and Operation", Prentice Hall, New Delhi, 2002. 7
- 3. Lee, C.C. and Shun dar Lin, "Handbook of Environmental Engineering Calculations", McGraw Hill, New York, 1999.
- 4. F.R. Spellman, "Hand Book of Water and Wastewater Treatment Plant operations", CRC Press, New York (2009).
- 5. David Hendricks, "Fundamentals of Water Treatment Process", CRC Press New York (2011)

mapping o				-	-		-							
	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1		1	1	1	1	1			1				1	
CO 2		1	2	1	1	1			2				2	1
CO 3	1		3	2			1		1	1	1		2	
CO 4	1	1	1	1			1	1	2			1	1	
CO 5			2	2				1	1	1		2	1	
Total	2	3	9	7	2	2	2	2	7	2	1	3	7	1
Scaled Value	1	1	2	2	1	1	1	1	2	1	1	1	2	1
Note:		Total	(0	1	-5	6-	10	11	-15				
	Scaled	value	(0		l		2		3				
	Re	lation	N	lo	Lo)W	Med	lium	Hi	gh				

Sen	neste	er	:	:											
Co	urse	Code	e :	: X	CEE20										
Co	urse	Nam	e	: S	URFACE HY	DROLO	OGY								
Pre	erequ	iisite	:	:	-										
	L	Т	P	C]	С	Р	Α			L	Т	P	H]
	3	0	0	3	-	2.5	0	0.5			3	0	0	3	
• • •	To st To k An a	now t bility	he hy he in to an	drolo filtrat alyse	pgic cycle and e tion and runoff the various me the complete	ethods of	floods	frequenc	• •	is Dom a	ain			Lev	'n
		ible t		11,100		.on of 1		50, 51110		C or P		A		Lev	CI.
CO	1	Calcu	ılate t	he va	rious compone	nts of hy	drologi	ic cycle	C	Cognitiv	ve		Und	erstai	nd
CO		Apply chara	·	-	nciple of hyd	lrograph	to es	stimate f	flood C	Cognitiv	ve		Und	erstai	nd
CO	3	Unde	rstan	d the	infiltration proc	cesses		C	Cognitiv	/e		Und	erstai	nd	

Respond Create Create

		Affective
CO4	Able to understand the runoff detailing	Cognitive
CO5	Estimate the flood peak discharge	Cognitive

COURSE CONTENT

UNIT I	INTRODUCTION	9
	Introduction: Hydrologic cycle - systems concept - hydrologic system model - hydrologic model classification. Stream flow measurement - measurement of stage – discharge measurements. Stage – discharge relations - selection of a stream gauging site – stream gauge network.	
UNIT II	EVAPORATION	9
	Measurement, estimation and control of evapo-transporation (ET) – evapo- transpiration and consumptiveuse – lysimeters and field pots – potential ET and its computation – pan evaporation - Pennman's method – BlaneyCriddle method – reference crop ET and crop coefficient – interception and depression storage.	
UNIT III	INFILTRATION PROCESSES	9
	Measurement – Infiltration Capacity And Indices – Model Of Infiltration. Rain Water Harvesting – Advantages - Alterations In Hydrologic Cycle – Methods Of Water Conservation.	
UNIT IV	RUNOFF	9
	Components of runoff - Characteristics of runoff – factors affecting runoff – components of hydrograph – base flow separation – rain fall – runoff relations – flow duration curve - flow Mass curve - hydrograph analysis - unit hydrograph theory – derivation of unit hydrograph – applications and limitations of unit hydrograph – 'S' hydrograph – instantaneous unit hydrograph – unit hydrograph for ungauged catchments – synthetic hydrograph – conceptual elements – linear reservoirs – Nash	

model. Yield from a catchment - flow duration curves - flow mass curve.

UNIT V FLOODS

Floods – estimation of peak discharge – rational method - unit hydrograph method. Probabilistic and statistical methods – basic concept of probability and frequency distribution – skewness coefficient – return period discrete distribution – Binomial distribution – continuous distribution – flood frequency analysis – normal, lognormal, Gumbel and Log-Pearson Type III methods. Flood routing – reservoir routing – Modified pulse method – channel routing – Musking hum method.

45 0 0 45	L	Т	Р	Total
	45	0	0	45

TEXT BOOKS

- 1. Garg S.K., Hydrology and Water Resources Engineering
- 2. Subramanya, K., Engineering Hydrology, Tata McGraw Hill, New Delhi.
- 3. Raghunath, H.M., Groundwater, 1987, Wiley Eastern Ltd., New Delhi.
- 4. Modi, P.N., Irrigation Water Resources and Water Power Engineering, Standard Book

House, New Delhi.

REFERENCE BOOKS

- 1. Todd, D.K., Groundwater Hydrology, 1993 John Wiley & Sons..
- 2. Raghunath, H.M., Hydrology Principles, Analysis and Design, 1986, Wiley
- 3. Dr. P.Jaya Rami Reddy, A Textbook of Hydrology, University Science Press.

Mapping of CO with PO's

Relation

No

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	1	1				2	1			1				2
CO 2	1	1				2	1			2				2
CO 3	1	1				2	1			2				2
CO 4	1	2				3	1			2				3
CO 5	2	1				3	1			3				3
Total	6	6				12	5			10				12
Scaled Value	2	2	0	0	0	3	1	0	0	2	0	0	0	3
Note:		Total	(1	-5		10		-15				
	Scaled	value	()		1	2	2		3				

Low

Medium

High

Semeste Course		: e :	X	CEE21									
				NVIRONME LUID MECH		LUID N	MECHA	NICS					
L	Т	Р	C		С	Р	Α]	L	Т	Р	Η	
3	0	0	3		3	0	0		3	0	0	3	1
	Ohia			1				J					

Course Objectives

- Understand the effects of diffusion, advection, dispersion, and chemical reactions on • concentrations in the environment
- Apply the governing transport equations to solve problems with diverse boundary and initial • conditions
- Evaluate the important processes affecting fate and transport in a range of problem situations •

Course	Outcome: After the completion of the course, students	Domain	Level
will be	able to	C or P or A	
CO1	Apply knowledge of basic mathematics, science, and engineering	Cognitive	Understand
CO2	Ability to function on multi-disciplinary teams	Cognitive	Understand
CO3	Ability to identify, formulate and solve engineering problems	Cognitive	Understand
CO4	Ability to understand the impact of engineering solutions in a global and societal context	Cognitive	Understand
CO5	Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	Cognitive	Understand

COURSE CONTENT

UNIT I **INTRODUCTION**

Introduction to fluid and mass transport in naturally occurring flows; topics include molecular and turbulent diffusion; dispersion; river, estuary, and ocean mixing; dissolution boundary layers; tidal mixing; offshore wastewater outfalls;

UNIT II APPLICATION AND ANALYSIS

Fick's law -Diffusion equation -Integral solutions: CSTR solutions for marina design -Differential analysis: Instantaneous point source solution in 1D - Advective diffusion and solutions in 2D and 3D Initial spatial distributions; fixed concentrations -Other solutions, superposition and image sources

UNIT III **POTENTIAL FLOW**

Potential flow -porous media flows, surface/internal waves in oceans and lakes.

UNIT IV LAMINAR FLOW

Laminar flow (channel and overland flow, mud flow, transient and oscillatory boundary layer, induced streaming, mass transport)

UNIT V **TURBULENT FLOW**

Turbulent flow (instability, characteristics, averaging, Reynolds and turbulent kinetic eqns, applications: effluent discharge, boundary layer)

L	Т	Р	Total
45	0	0	45

9

9

7

11

- 1. Chin, David A. (2006). Water Quality Engineering in Natural Systems. Wiley Interscience: Hoboken, New Jersey. (Available free online through the TAMU library)
- 2. Socolofsky, S. A. and Jirka, G. H. (2005), Special Topics on Mixing and Transport in the Environment
- 3. Fischer, Hugo B., List, E. John, Koh, Robert C. Y., Imberger, Jörg, and Brooks, Norman H.

(1979), Mixing in Inland and Coastal Waters, Academic Press: San Diego, CA.

REFERENCE BOOKS

- 1. Chapra, Steven C. (1997), Surface Water-Quality Modeling, McGraw-Hill: Boston, MA.
- 2. Hemond, Harold F. and Fechner-Levy, Elizabeth J. (2000), Chemical Fate and Transport in the Environment, 2nd Edition, Academic Press: San Diego, CA.
- 3. Wainwright, J. and Mulligan, M., eds. (2004), Environmental Modelling: Finding Simplicity in Complexity, John Wiley &Sons, Ltd.: Hoboken, NJ.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	1	1	1			1	1			1			1	1
CO 2	1	1	1			1	1			1			1	1
CO 3	2	1	1			1	1			1				
CO 4	2		2			3	1			1			3	2
CO 5	3		3			2	1			1			3	2
Total	9	3	8	0	0	8	5	0	0	5	0	0	8	6
Scaled Value	2	1	2	0	0	2	1	0	0	1	0	0	2	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester : Course Code : XCEE22

:

Course Name : Water Resources Field Methods.

Prerequisite

L	Т	Р	С	С	Р	Α	L	Т	Р	Η
3	0	0	3	2.5	0	0.5	3	0	0	3

Course Objectives

- Measure stream velocity and discharge, travel time, stream / hyporheic exchange, bankfull stage, hydrologic return intervals
- Measure stream and land slopes, areas; determine land cover
- Work safely in various field environments
- Develop and implement a quality assurance plan to insure collection of quality data
- Select, install, and operate hydrologic equipment and sensors (samplers, flow measurement systems, meteorological equipment, soil moisture)
- Conduct basic laboratory analytical analyses (total suspended solids, dissolved and particulate nutrients, bacteria, total suspended sediment)
- Identify and deal with statistical outliers
- Plan and conduct a hydrologic and water quality field study

	e Outcome: After the completion of the course, students	Domain	Level
will be	able to	C or P or A	
CO1	Understand Site characterization Basic surveying and the measurement technologies	Cognitive	Remember & Understand
CO2	Measure and record the details water-resources	Cognitive	Remember & Analyse
CO3	Understand the methods and sampling of water.	Cognitive	Understand & Apply
CO4	sampling of volatile organic compounds and maintain data quality.	Cognitive Affective	Understand & Analyse Receive
CO5	Understand groundwater monitoring wells and stream flow monitoring stations	Cognitive	Understand & Apply

COURSE CONTENT

UNIT I INTRODUCTION

Scientific principles of measurement technologies and protocols used for waterresources measurements - Basic Concepts Related to Flowing Water and Measurement, Measurement Accuracy, Selection of Water Measuring Devices,

UNIT II EXPERIMENTAL DESIGN

Experimental design of field-scale water-resources and environmental studies. Inspection of Water Measurement Systems, Measuring and Recording Water Stage or Head, Current Meters.and experimental design of field-scale, water-resources and environmental studies. 9

UNIT III PLANNING FIELD STUDIES

Instruments and protocols - for surface-water, ground-water, and water-quality sampling; -Water sampling protocols -Sampling groundwater from boreholes - Preparation to sample monitoring wells- Sampling monitoring wells -Sampling of oily-water separators -Sampling surface water

UNIT IV WATER SAMPLING

For volatile organic compounds- Water sampling for metals-Introduction quality assurance - Sample preparation - Description of data quality

UNIT V MONITORING STATIONS

Stream flow monitoring stations - Groundwater monitoring wells.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

4. Li, Y. and K. Migliaccio "Water Quality Concepts, Sampling, and Analyses. Boca Raton",

FL: CRC Press(2011)..

E RESOURCES

- 1. USGS Techniques of Water-Resources Investigations Reports, available electronically at no cost (http://pubs.usgs.gov/twri/ (http://pubs.usgs.gov/twri/)
- 2. U.S. Geological Survey (1995). Book 3, Section A: Surface Water Techniques. Techniques of Water Resources Investigations of the United States Geological Survey. Washington, D.C.: USGS.
- 3. U.S. Geological Survey (2002). Book 4, Section A: Statistical analysis. Techniques of Water Resources Investigations of the United States Geological Survey. Washington, D.C.: USGS.
- 4. U.S. Geological Survey (1973). Book 4, Section B: Surface Water. Techniques of Water Resources Investigations of the United States Geological Survey. Washington, D.C.: USGS.
- 5. U.S. Geological Survey (2004). Book 8, Section A: Instruments for measurement of water level. Techniques of Water Resources Investigations of the United States Geological Survey. Washington, D.C.: USGS

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3		1											
CO 2	3													
CO 3	3	2												
CO 4	3	2												
CO 5	3	2												
Total	15	6	1	0	0	0	0	0	0	0	0	0	0	0
Scaled Value	3	2	1	0	0	0	0	0	0	0	0	0	0	0

Mapping of CO with PO's

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

138

9

9

Semest		:											
	e coue		CEE23										
Course	e Name	: F	EPAIR &	REHABI	LITATI	ON OF S	STRUCTUR	ES.					
Prereq	quisite	: (Concrete Te	chnology									
L	T P	С		С	Р	Α		L	Т	Р	Η		
3	0 0	3		3	0	0		3	0	0	3		
Course	e Objectiv	es											
• To	• To gain the knowledge on maintenance and repair strategies												
• To	• To perceive the knowledge on quality of concrete												
• To	recognize v	arious	types of ma	terials and	l its prop	erties							
• To	assess the d	amage	e to structure	es using va	rious tes	ts							
• To	learn variou	is repa	ir technique	s of dama	ged struc	tures and	d corroded str	uctures					
Course	Outcome:	After	• the compl	etion of t	he cours	se, stude	ents will be	Dom	ain		Lev	vel	
able to	,							C or P	or A				
CO1	Understan	d the	importance of	of mainten	ance and	l repair		Cogniti	ve	1	Unders	stand	
CO2	CO2 Understand the concept of quality assurance of concrete properties Cognitive Understand												
CO3	CO3 Understand the various concrete materials used for repair works Cognitive Understand												
CO4	Knowledg construction		the applicat	tion of re	pair tecl	nniques	in concrete	Cogniti	ve	1	Unders	stand	

CO5 Understand the repair, rehabilitation and retrofitting of structures Cognitive Understand

UNIT I	MAINTENANCE AND REPAIR STRATEGIES 9
	Maintenance and Repair Strategies Maintenance, Repair and Rehabilitation, Facts of Maintenance, importance of Maintenance, Various aspects of Inspection, Assessment procedure for evaluating a damaged structure, causes of deterioration;
UNIT II	STRENGTH AND DURABILITY OF CONCRETE 9
	Quality assurance for concrete – Strength, Durability and Thermal properties, of concrete – Cracks, different types, causes – Effects due to climate, temperature, Sustained elevated temperature, Corrosion – Effects of cover thickness
UNIT III	SPECIAL CONCRETES 9
	Polymer concrete, Sulphur infiltrated concrete, Fibre reinforced concrete, High strength concrete, High performance concrete, Vacuum concrete, Self-compacting concrete, Geopolymer concrete, Reactive powder concrete, Concrete made with industrial wastes;
UNIT IV	REPAIR TECHNIQUES9
	Techniques for Repair and Protection Methods- Non-destructive Testing Techniques, Epoxy injection, Shoring, Underpinning, Corrosion protection techniques – Corrosion inhibitors, Corrosion resistant steels, Coatings to reinforcement, cathodic protection;
UNIT V	REPAIR, REHABILITATION AND RETROFITTING OF STRUCTURES 9
	Evaluation of root causes; Underpinning & shoring; some simple systems of rehabilitation of structures; Guniting, shotcreting; Non-Destructive testing systems;Use of external plates, carbon fibre wrapping and carbon composites in repairs. Strengthening of Structural elements, Repair of structures distressed due to corrosion, fire, Leakage, earthquake – Demolition Techniques – Engineered demolition methods – Case studies.

L	Т	Р	Total
45	0	0	45

- 1. Denison Campbell, Allen and Harold Roper, "Concrete Structures", Materials, Maintenance and Repair, Longman Scientific and Technical UK, 1991.
- 2. Norbert Delatte, "Failure, Distress and Repair of Concrete Structures", Woodhead Publishing, 2009.
- 3. Shetty.M.S., "Concrete Technology Theory and Practice", S.Chand and Company, New Delhi, 2009.

REFERENCES

- 1. Deterioration, maintenance and repair of structures, Johnson SM McGraw Hill International Publishers, New York.
- 2. Santhakumar, A.R., "Training Course notes on Damage Assessment and repair in Low Cost Housing", "RHDC-NBO" Anna University,1992.
- 3. Raikar, R.N., "Learning from failures Deficiencies in Design", Construction and Service R & D Centre (SDCPL), RaikarBhavan, Bombay, 1987.
- 4. Ravishankar.K., Krishnamoorthy.T.S,"Structural Health Monitoring, Repair and Rehabilitation of Concrete Structures"Allied Publishers, 2004

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2	1	-	-	1					_	_	-	2	1
CO 2	2	1	-	-	1								2	1
CO 3	2	1	-	-	1								2	1
CO 4	3	2	1	1	1								3	1
CO 5	3	2	1	1	1								3	1
Total	12	7	2	2	5	0	0	0	0	0	0	0	10	5
Scaled Value	3	2	1	1	1	0	0	0	0	0	0	0	2	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester : Course Code : XCEE24

:

Course Name : BUILDING CONSTRUCTION PRACTICE.

Prerequisite

L	Т	Р	С	С	Р	Α	L	Т	Р	Η
3	0	0	3	2	0	1	3	0	0	3

Course Objectives

- To make aware of site clearance, marking and earthwork
- To gain the knowledge in masonry and finishes
- To perceive the knowledge on shuttering and scaffolding
- To understand the latest construction techniques for sub structure
- To understand the latest construction techniques for super structure

Course able to	Outcome: After the completion of the course, students will be	Domain C or P or A	Level
CO1 CO2	Able to understand the construction activities Perceive the knowledge on various masonry and finishes	Cognitive Cognitive	Understand Understand
CO3	Explain the shuttering and scaffolding methods	Cognitive Affective	Understand Respond
CO4	Identify various techniques adopted in sub structure construction	Cognitive	Understand
CO5	Understand the different techniques used in super-structures	Cognitive	Understand

UNIT I	INTRODUCTION 9
	Specifications, details and sequence of activities and construction co-ordination – Site Clearance – Marking – Earthwork
UNIT II	MASONRY AND FINISHES 9
	Masonry – stone masonry – Bond in masonry - concrete hollow block masonry – flooring – laying brick Building foundations – basements – weather and water proof – roof finishes - acoustic and fire protection;
UNIT III	SHUTTERING AND SCAFFOLDINS7
	Temporary shed – centring and shuttering – slip forms – scaffoldings – de-shuttering forms – Fabrication and erection of steel trusses – frames – braced domes.
UNIT IV	SUB STRUCTURE CONSTRUCTION11
	Techniques of Box jacking – Pipe Jacking -under water construction of diaphragm walls and basement-Tunnelling techniques – Piling techniques - well and caisson - sinking cofferdam - cable anchoring and grouting-driving diaphragm walls, sheet piles - shoring for deep cutting - well points -Dewatering and stand by Plant equipment for underground open excavation;
UNIT V	SUPER STRUCTURE CONSTRUCTION9
	Launching girders, bridge decks, off shore platforms – special forms for shells - techniques for heavy decks – in-situ pre-stressing in high rise structures, Material handling - erecting light weight components on tall structures - Support structure for heavy Equipment and conveyors - Erection of articulated structures, braced domes and space decks;

L	Т	Р	Total
45	0	0	45

- 1. Peurifoy, R.L., Ledbetter, W.B. and Schexnayder, C., Construction Planning, Equipment and Methods, McGraw Hill, Singapore, 5th Edition, 2015.
- 2. Arora S.P. and Bindra S.P., Building Construction, Planning Techniques and Method of Construction, DhanpatRai and Sons, New Delhi 2007.

REFERENCES

- 1. Jha, J and Sinha, S.K., Construction and Foundation Engineering, KhannaPublishers, New Delhi, 2004.
- 2. Sharma S.C. Construction Equipment and Management, Khanna Publishers New Delhi, 1988.
- 3. Deodhar, S.V. Construction Equipment and Job Planning, Khanna Publishers, New Delhi, 1988.
- 4. Mahesh Varma, Construction Equipment and its Planning and Application, Metropolitan Book Company, New Delhi, 1983

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	1	2				1								1
CO 2	1	2				1								1
CO 3	2	2				1								1
CO 4	3	3				2								2
CO 5	3	3				2								2
Total	10	12	0	0	0	1	0	0	0	0	0	0	0	1
Scaled Value	3	2	1	1	1	0	0	0	0	0	0	0	2	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester : Course Code : XCEE25 Course Name : CONSTRUCTION EQUIPMENT AND AUTOMATION

Prerequisite :

-											
L	Т	Р	C	С	Р	Α	L	Т	Р	Η	
3	0	0	3	2	0	1	3	0	0	3	

Course Objectives

- To enable the students familiarize with modern construction equipments.
- To understand the equipment management methods and equipment functional operations.
- To learn the applications of the equipment in construction projects.

	e Outcome: After the completion of the course, students able to	Domain C or P or A	Level	
CO1	Identify construction equipment appropriate to tasks	Cognitive	Understanding	
CO2	Estimate equipment ownership and operating costs	Cognitive	Understanding	
		Affective	Responding	
CO3	Estimate and schedule activities using equipment	Cognitive	Understanding	
	productivity and cost data	Affective	Responding	
CO4	Understand contemporary issues pertaining to construction methods, equipment usage and management.	Cognitive	Understanding	
CO5	Recognize the concept of intelligent buildings	Cognitive	Understanding	

UNIT I	EQUIPMENT MANAGEMENT 9
	Identification -Planning - Equipment Management in Projects - Maintenance Management -
	Replacement - Cost Control of Equipment - Depreciation Analysis, Methods of calculation
	of depreciation- Safety Management.
UNIT II	EARTHWORK EQUIPMENT9
	Fundamentals of Earth Work Operations - Earth Moving operations-Types of Earthwork
	Equipment - Tractors, Motor Graders, Scrapers, Front end Loaders, Earth Movers - capacity
	calculations.
UNIT III	PUMPS USED IN CONSTRUCTION9
	Equipment for Dredging, Trenching, Tunnelling, Drilling and Blasting. Equipment for compaction - Types of pumps used in Construction - Equipment for Grouting - Pile Driving Equipment-Equipment of Erection and demolition
UNIT IV	SCREENING EQUIPMENT 9
	Crushers – Feeders - Screening Equipment - Batching and Mixing Equipment – Hauling equipment - Pouring and Pumping Equipment – Ready mixed concrete carriers.
UNIT V	INTELLIGENT BUILDINGS & BUILDING MANAGEMENT SYSTEM 9
	Concept-Purpose-Control Technologies- Automation Of All The Services And Equipment -
	Building Management Systems (BMS) -Energy Management Systems And Building controls.

L	Т	Р	Total
45	0	0	45

- 1. Sharma S.C. "Construction Equipment and Management", Khanna Publishers, Delhi, 2008.
- 2. Peurifoy, R.L., Ledbetter, W.B. and Schexnayder.C, "Construction Planning Equipment and Methods", McGraw Hill. Singapore 2005.
- 3. William T.Mayer, "Energy Economics and Build Design ", McGraw Hill Book Co., 1983

REFERENCES

- 1. Deodhar, S.V. "Construction Equipment and Job Planning", Khanna Publishers Delhi, 2008.
- 2. Leonhard E.Bernold, "Construction Equipment and Methods", Wileyindia Pvt. Ltd2005.
- 3. Mahesh Varma .Dr, "Construction Equipment and its planning and application", Metropolitan Book Company, New Delhi, 2003.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O	PO 10	PO 11	PO 12	PS01	PSO2
CO 1				1				1		1				
CO 2	3	2			2	2			2	2	1	3	2	1
CO 3	3	2			2	2					1	3		
CO 4			1								3			
CO 5			1				2		2					2
Total	6	4	2	1	4	4	2	1	4	3	5	6	2	3
Scaled Value	2	1	1	1	1	1	1	1	1	1	1	2	1	1
Note:	Total		()	1.	-5	6-	10	11	-15				
	Scaled value		()	1		2		, í	3				
	Relation		N	lo	Lo)W	Med	lium	Hi	igh				

Semester Course Code

: : XCEE26

Course Name : CONTRACTS MANAGEMENT

Prerequisite :

L	Т	Р	С	С	Р	Α
3	0	0	3	2	0	1

Course Objectives

- To understand the various types of construction contracts.
- To learn about the tenders, arbitration and labour regulations.
- To Know the various legal implications related to contracts.

	e Outcome: After the completion of the course, students able to	Domain C or P or A	Level
CO1	Recognize the various types of construction contracts	Cognitive	Understanding
CO2	Understand the tenders, arbitration and legal requirements	Cognitive	Understanding
		Affective	Responding
CO3	Gain knowledge about various tax laws	Cognitive	Understanding
CO4	Able to analyse, evaluate and design construction contract	Cognitive	Understanding
	documents	Affective	Responding
CO5	Gain knowledge in labour regulations.	Cognitive	Understanding

COURSE CONTENT

UNIT I INTRODUCTION TO CONSTRUCTION CONTRACT

Definition of Contract Legal issues in contract – Standard forms of contracts- General and special conditions of contracts- Contract pricing by the client, project management consultants and the contractor, Contract correspondence and contract closure. Types of contracts, Documents forming a contract, General conditions of Indian contracts - International contracts - Contract administration.

UNIT II TENDERS

Prequalification – Bidding – Accepting – Evaluation of Tender from Technical, Contractual and Commercial Points of View – Contract Formation and Interpretation – Potential Contractual Problems - World Bank Procedures and Guidelines – Tamilnadu Transparency in Tenders Act.

UNIT III ARBITRATION

Comparison of Actions and Laws – Agreements – Appointment of Arbitrators – Conditions of Arbitration – Arbitration Tribunals - Powers and Duties of Arbitrator – Enforcement of Award – Arbitration and Conciliation Act 1996 - Arbitration case study.

UNIT IV TAX LAWS

Income Tax, Sales Tax, Excise and Custom Duties and their Influence on Construction Costs – Legal Requirements for Planning – Property Law – Agency Law – Local Government Laws for Approval – Statutory Regulations

9

Т

0

Р

0

н 3

9

9

UNIT V LABOUR REGULATION

Social Security – Welfare Legislation – Laws relating to Wages, Bonus and Industrial Disputes, Labour Administration – Insurance and Safety Regulations – Workmen's Compensation Act – Indian Factory Act – Tamilnadu Factory Act – Child Labour Act – Other Labour Laws

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Anurag K Agarwal, "Contracts and Arbitration for Managers", SAGE Response, 2015.
- S. RanagaRao, "Contract Management & Dispute Resolutions", Engineering staff College of India, 2008.
- 3. C. J. Schexnayder and R. E. Mayo, "Construction Management Fundamentals", McGraw Hill, New Delhi. 2003.

REFERENCES

- 1. Prof AkhileshwarPathak, "Contract Terms Are Common Sense", Penguin Portfolio, 2018.
- 2. B. S. Patil "Civil Engineering Contracts and Estimates", Universities Press, 2009.
- 3. D.S. Berrie and B.c.Paulson, "Professional construction management including C.M.Design construct and general contracting" McGraw Hill International, 1992.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1											1		1	
CO 2			2			3		3	2	1	1		1	
CO 3	2	2							2	1	1			
CO 4	2	1		2		3						1		
CO 5					2		3			2				1
Total	4	3	2	2	2	6	3	3	4	4	3	1	2	1
Scaled Value	1	1	1	1	1	2	1	1	1	1	1	1	1	1
Note:		Total	()	1-	-5	6-	10	11	-15				
Scaled value		()	1	l	1	2	,	3					
	Re	lation	N	ю	Lo	W	Med	lium	Hi	gh				

Sem Cou			e :	X	CEE27									
					NVIRONMI Environmenta			ND POL	JCY					
Γ	L	Т	Р	C		С	Р	Α	1	L	Τ	Р	Η	
	3	0	0	3		3	0	0		3	0	0	3	
Cou	rse	Obje	ective	es			•	•	4					

- To recognize statutory goal setting means and approaches
- To gain knowledge in implementing the environmental law statutes to factual situations.
- To analyse the legal opinions and legal principles

	Outcome: After the completion of the course, students able to	Domain C or P or A	Level
CO1	Describe different methods for setting environmental goals and the means to achieve those goals	Cognitive	Knowledge
CO2	Read and understand legal opinions and analyze opinions to find legal principles	Cognitive	Knowledge
CO3	Apply common law environmental remedies and explain how those remedies supplement environmental statutory law	Cognitive	Apply
CO4	Apply major common law environmental causes of action and environmental law statutes to factual situations.	Cognitive	Applly

COURSE CONTENT

UNIT I INTRODUCTION

Concept of laws and policies, Origin of environmental law, Introduction to environmental laws and policies, Environment and Governance, sustainable development and environment. 9

9

9

9

UNIT II ENVIRONMENTAL PROTECTION

Duties and responsibilities of citizens for environmental protection – Subjects related to environment in the seventh schedule of the Constitution: Union list, State list and Common or Concurrent list - Scheme of labelling of environmentally friendly products (ecomark) – Significance of Environmental Education – Environmental Information Systems (ENVIS)

UNIT III ENVIRONMENTAL LAWS IN INDIA

Legal control of Environmental pollution in India with special reference to: Environment (Protection) Act, 1986 - Powers of Central Government under EPA - The Water (Prevention and Control of Pollution) Act 1974 - Air (Prevention and Control of Pollution) Act, 1981 – Forest Conservation Act, 1980 – Wildlife (Protection) Act, 1972 - The National Green Tribunal Act, 2010

UNIT IV GUIDELINES AND RULES FOR ENVIRONMENTAL PROTECTION

Guidelines for Common Effluent Treatment Plants (CETPs) – Guidelines for environmentally sound management of e-waste 2008 - The Biomedical waste (Management and Handling) Rules 1998 - Hazardous Waste (Management and Handling) Rules, 1989 - The Municipal Solid Wastes (Management and Handling) Rules, 2000 - The Ozone Depleting Substances (Regulation and Control) Rules, 2000

UNIT V MAJOR INITIATIVES/POLICIES FROM MOEF

Central and State Pollution Control Boards: Powers and functions of pollution control boards - Penalties and procedure - National Policies for Environmental Protection in India: National River Conservation Plan (NRCP), National Green Tribunal (NGT), Capacity Building for Industrial Pollution Management (CBIPM), National Environmental Protection Authority (NEPA), Green India Mission – Environmental Clearances: National Environmental Assessment and Monitoring Authority (NEAMA)

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Constitution of India Eastern Book Company Lucknow 12thEdn. 1997.
- 2. Constitutional Law of India J.N. Pandey 1997 (31stEdn.) Central Law Agency Allahabad.
- 3. Administrative Law U.P.D. Kesari 1998. Universal Book Trade Delhi.
- 4. Environmental Law H.N. Tiwari, Allahabad Law. Agency 1997.

REFERENCES

- 1. Environmental, A., Divan and Noble M. Environmental Law and Policy in India (cases, Materials and Statutes) 1991 Tripathi Bombay.
- 2. Environmental Policy. Forest Policy. Bare Acts Government Gazette Notification.

E REFERENCES

- 1. cpcb.nic.in/
- 2. <u>http://envfor.nic.in/</u>
- 3. <u>www.tnpcb.gov.in/</u>
- 4. <u>www.thesummitbali.com/</u>
- 5. envfor.nic.in/legis/legis.html
- 6. edugreen.teri.res.in/explore/laws.htm
- 7. envfor.nic.in/legis/crz/crznew.html
- 8. rti.gov.in/
- 9. <u>www.ngosindia.com/resources/pil.php</u>

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	2		1								1	2	1
CO 2	2	2	1	1								2	3	2
CO 3	1	3	1			1	1			1		1	2	3
CO 4	2	2	3	2		1							1	3
CO 5	2	1	3	1								2	1	2
Total	9	10	8	5	0	2	1	0	0	1	0	6	9	11
Scaled Value	2	2	2	1	0	1	1	0	0	1	0	2	2	3
Note:		Total	()	1.	-5	6-	10	11	-15				
	Scaled	value	()	1	1		2		3				
	Re	lation	N	lo	Lo	ow	Med	lium	Hi	gh				

neste urse		e :	X	CEE28									
				OLID AND H Environmental			VASTE	MANAGEMI	ENT				
L	Т	Р	С		С	Р	Α		L	Т	Р	Η	
3	0	0	3		2	0	1		3	0	0	3	

Course Objectives

• To make the students conversant with the types, sources, generation, storage, collection, transport, processing and disposal of municipal solid waste.

	e Outcome: After the completion of the course, students able to	Domain C or P or A	Level
CO1	Characterize the physical and chemical composition of Solid and Hazardous waste	Cognitive Affective	Understand Respond
CO2	Explain the functional elements for solid waste management System	Cognitive	Understand
CO3	Identify the methods of collection, segregation and transport of solid and Hazardous waste	Cognitive	Understand
CO4	Understand the techniques and methods used in energy recovery and recovery of materials from solid wastes	Cognitive Affective	Understand Respond
CO5	Describe methods of disposal of solid and hazardous waste.	Cognitive	Knowledge

COURSE CONTENT

UNIT I SOURCES, CLASSIFICATION AND REGULATORY FRAMEWORK

Types and Sources of solid wastes - Need for solid waste management – Elements of integrated waste management and roles of stakeholders - Salient features of Indian legislations on management and handling of municipal solid wastes, hazardous wastes, biomedical wastes, E-wastes, Lead Acid batteries, plastics and fly ash - Financing waste management.

9

9

9

9

UNIT II WASTE CHARACTERIZATION AND SOURCE REDUCTION

Waste generation rates and variation - Composition, physical, chemical and biological properties of solid wastes –Hazardous characteristics - TCLP tests - Waste generation from nuclear power plants- Waste sampling and characterization plan - Source reduction of wastes –Waste exchange - Extended producer responsibility - Recycling and reuse.

UNIT III STORAGE, COLLECTION AND TRANSPORT OF WASTES

Handling and segregation of wastes at source – storage and collection of municipal solid wastes – Analysis of Collection systems - Need for transfer and transport – Transfer stations Optimizing waste allocation –compatibility, storage, labeling and handling and Transport of hazardous wastes.

UNIT IV WASTE PROCESSING TECHNOLOGIES

Material separation and processing technologies – biological and chemical conversion technologies – methods and controls of Composting - thermal conversion technologies and energy recovery – incineration- solidification and stabilization of hazardous wastes – bio medical waste treatment.

UNIT V WASTE DISPOSAL

Waste disposal options – Disposal in landfills - Landfill Classification, types and methods – site selection - Design and operation of sanitary landfills, secure landfills and landfill bioreactors – leachate and landfill gas management – landfill closure and environmental monitoring – Rehabilitation of open dumps – landfill remediation-Hazardous and Nuclear waste disposal options.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. George Tchobanoglous, Hilary Theisen and Samuel A, Vigil, "Integrated Solid Waste Management, Mc-Graw Hill International edition, New York, 1993.
- 2. Michael D. LaGrega, Philip L Buckingham, Jeffrey C. E vans and Environmental Resources Management, Hazardous waste Management, Mc-Graw Hill International edition, New York, 2001

REFERENCES

- 1. CPHEEO, "Manual on Municipal Solid waste management, Central Public Health and Environmental Engineering Organization, Government of India, New Delhi, 2000.
- 2. Vesilind P.A., Worrell W and Reinhart, Solid waste Engineering, Thomson Learning Inc., Singapore, 2002.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 O4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	2		1								1	2	1
CO 2	2	2	1	1								2	3	2
CO 3	1	3	1			1	1			1		1	2	3
CO 4	2	2	3	2		1							1	3
CO 5	2	1	3	1								2	1	2
Total	9	10	8	5	0	2	1	0	0	1	0	6	9	11
Scaled Value	2	2	2	1	0	1	1	0	0	1	0	2	2	3
Note:		Total	(0	1.	-5	6-	10	11	-15				
	Scaled value		(0	1	l	2	2		3				
Relation		N	lo	Lo	ow	Med	lium	Hi	gh					

Sen	neste	er	:	:										
Cou	ırse	Code	e :	: X	CEE29									
Cou	Course Name : AIR AND NOISE POLLUTION AND CONTROL													
Pre	requ	isite	:	; F	Environmental	Engine	ering							
	L	Т	Р	С		С	Р	Α		L	Τ	Р	Η	
	3	0	0	3		3	0	1		3	0	0	3	
Course Objectives														
• To learn the effects of air pollutants														
	•]	Го gai	n the	knov	vledge on vario	us partic	culate co	ontrol me	ethods					
	•]	Го un	dersta	and th	e impact of gas	seous po	llutants	and cont	rolling method	ls				
	•]	Го реі	ceive	e knov	wledge on air s	ampling	g and po	ollutant r	neasurement					
	•]	Го id	entify	the	concepts of noi	se pollu	tion and	control	methods					
Cou	irse (Outco	ome:	Afte	r the complete	ion of th	he cour	se, stuc		nain			Leve	
will	be a	ible t	0						C or 1	P or	A			
CO	1	Unde	rstan	d the	effects of air pe	allutants			Cogniti	ve		Unde	rstand	
	-				enteets of an p	Jinutums			Coginti			onac	istanu	
CO					particulate con				Cogniti				erstand	

- CO4 Acquire knowledge on air sampling and pollutant Cognitive Knowledge measurement
- CO5 *Recognise* the concepts of noise pollution and control Cognitive Knowledge methods

COURSE CONTENT

UNIT I AIR POLLUTANTS

Air pollutants, Sources, classification, Combustion Processes and pollutant emission, Effects on Health, vegetation, materials and atmosphere, Reactions of pollutants in the atmosphere and their effects-Smoke, smog and ozone disturbance, Greenhouse effect.

UNIT II	PARTICULATE CONTROL 9	
	Air Pollution control- at source-equipments for control of air pollution-For particulat matter-Settling chambers-Fabric filters-Scrubbers-Cyclones Electrostatic precipitators	e
UNIT III	GAS POLLUTANT CONTROL 9	
	Gaseous pollutants-control by absorption-adsorption scrubbers-secondary combustion after burners, Working principles advantages and disadvantages, design criteria and examples	r
UNIT IV	AIR SAMPLING AND LEGISLATIONS 9	
	Air sampling and pollution measurement methods, principles and instruments, Ambient a quality and emission standards, Air pollution indices, Air Act, legislation and regulations control principles	

UNIT V INDOOR AIR QUALITY AND NOISE POLLUTION

Indoor air quality .Basics of acoustics and specification of sound; sound power, sound intensity and sound pressure levels; plane, point and line sources, multiple sources; outdoor and indoor noise propagation; psychoacoustics and noise criteria, effects of noise on health, annoyance rating schemes; special noise environments: Infrasound, ultrasound, impulsive sound and sonic boom; noise standards and limit values; noise instrumentation and monitoring procedure. Noise indices. Noise control methods.

L	Т	Р	Total
45	0	0	45

9

TEXT BOOKS

- 1. Noel de Nevers, Air Pollution Control Engineering, McGraw Hill, New York, 2010.
- 2. Lawrence K. Wang, Norman C. Parelra, Yung Tse Hung, Air Pollution Control Engineering, Tokyo, 2004.
- 3. Anjaneyulu. Y, 'Air Pollution and Control Technologies', Allied Publishers (P) Ltd., India, 2002

REFERENCES

- 1. David H.F. Liu, Bela G. Liptak 'Air Pollution', Lewis Publishers, 2000.
- 2. Arthur C.Stern, 'Air Pollution (Vol.I Vol.VIII)', Academic Press, 2006.
- 3. Wayne T.Davis, 'Air Pollution Engineering Manual', John Wiley & Sons, Inc., 2000

E REFERENCES

Mapping of CO with PO's

Relation

No

	11 8			1		1	1			1	1	1	1		
		P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CC)1				3		2	3		3					
CC) 2			2	3			3		3					2
CC) 3	1		1	3			3		3	1			1	1
CC) 4	1			3	2		3	2	3		1		1	1
CC) 5				3			3	3	3		1			
To	otal	2		3	15	2	2	15	5	15	1	2		2	4
Sca	aled Value	1	0	1	3	1	1	3	1	3	1	1	0	1	1
	Note:		Total		0	1.	-5	6-	10	11	-15				
		Scaled	value	(0	1	1	2	2		3				

Medium

High

Low

Sen	neste	er	:	:									
Сот	urse	Code	e :	X	CEE30								
Co	urse	Nam	e :	E E	nvironmenta	l Impac	t Asses	sment					
Pre	erequ	isite	:	N	il								
	L	Т	Р	C		С	Р	Α	L	Т	Р	H	
	3	0	0	3]	3	0	1	3	0	0	3	

Course Objectives

- To provide a basic understanding of the EIA process as it is used for research, planning, project or program evaluation, monitoring, and regulatory enforcement.
- To perceive the knowledge on Methodologies for assessment
- To understand the concepts of legal, economic, social, administrative and technical process
- To prepare the Environmental audit reports.
- To provide experience and training in environmental planning and related professions

	Outcome: After the completion of the course, students able to	Domain C or P or A	Level
CO1	Understand the EIA process to apply for research, planning, project	Cognitive	Understand
CO2	Acquire the knowledge on Assessment methodologies	Cognitive	Understand
CO3	Understand the concepts of legal, economic, social, administrative and technical process.	Cognitive	Understand
CO4	Create Environmental audit reports	Cognitive	Create
CO5	Experienced and Trained in Environmental Planning and related professions	Cognitive	Knowledge

COURSE CONTENT

UNIT I	INTRODUCTION	9
	Evolution of EIA: Concepts of EIA methodologies, Screening and scoping; Rapid EIA and Comprehensive EIA; General Framework for Environmental Impact Assessment. Characterization and site assessment.	
UNIT II	METHODOLOGIES AND ASSESSMENT	9
	Environmental Risk Analysis, Definition of Risk, Matrix Method. Checklist method, Fault tree analysis, Consequence Analysis; Life Cycle Assessment	
UNIT III	ENVIRONMENTAL MANAGEMENT PLAN	9
	Environmental Legislation; Introduction to Environmental Management Systems; Environmental Statement - procedures; Environmental Audit	
UNIT IV	ECONOMIC ANALYSIS	9
	Cost Benefit Analysis; Resource Balance, Energy Balance & Management Review; Operational Control;	
UNIT V	CASE STUDIES	9
	EIA for infrastructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Buildings – Water Supply and Drainage Projects	

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Canter, L.W., "Environmental Impact Assessment", McGraw-Hill, New York. 2006.
- 2. Lawrence, D.P., "Environmental Impact Assessment Practical solutions to recurrent problems", Wiley-Interscience, New Jersey 2003.
- **3.** Petts, J., "Handbook of Environmental Impact Assessment", Vol., I and II, Conwell Science London. 2009.

REFERENCES

- 1. Biswas, A.K. and Agarwala, S.B.C., "Environmental Impact Assessment for Developing Countries", Butterworth Heinemann, London. 2004.
- 2. The World Bank Group, "Environmental Assessment Source Book Vol. I, II and III. The World Bank, Washington. 2001.
- 3. John G. Rau and David C Hooten (Ed)., Environmental Impact Analysis Handbook,
- 4. McGraw-Hill Book Company, New York, 2010.

5. Judith petts, handbook of environmental impact assessment vol. i & ii, blackwell science, 1999

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 O	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	1	1	2			3	1	1		1				2
CO 2	1	3	1	1		3		1			1	1		1
CO 3	1	2	2			2		1			1	1		1
CO 4	1	2				1	1							2
CO 5	1	2				2	1							3
Total	4	8	5	1	0	9	2	3	0	1	2	2	0	7
Scaled Value	1	2	1	1	0	2	1	1	0	1	1	1	0	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semes Course		: le :	XC	CEMO1										
Course	e Nan	ne :	RE	CAL ESTATI	E AND V	VALUA	TION							
Prereg	uisit	e :	Nil											
L	, T	Р	С		С	Р	Α			L	Т	P	H	
0.	5 0	0.5	1		0.2	0.4	0.4			1	0	1	2	
• To :	study Outc	come: A	lamei	ntals of valuat the complet		•		•		nain			Lev	el
CO1 <i>Apply</i> the concept of property valuation and appraisal										ve		Unde	erstan	ding
CO2	Prac meth		luatic	on for differe	erent	e			Guided ResponseResp ding					

CO3 Perform an applied real estate analysis in a business PsychomotorAf situation

COURSE CONTENT

VALUATION

Principles and Purposes of valuation - Types of value. Various forms of obsolescence including depreciation. Valuation of properties: Hotels, Cinema, Petrol Station, Hill station properties. Effects of legislation. Valuer's role, functions and responsibility; Code of ethics. International Valuation Standards- Case Study.

REAL ESTATE

Types- Investments-Factors affecting urban land value. Market and Guideline Values -globalization and its effect. Management of real-estate - development and administration. Urban development finance with particular reference to real estate: Role of Housing Finance Development Corporation and other financial institutions and agencies. Ownership and tenancies in real estate: Rent control and other Government regulations. Fair rent and Market rent- Case Study

TEXT BOOKS

- 1. Dr Roshan H Namavati, "Professional Practice: With Elements of Estimating, Valuation, Contract and Arbitration" Lakhani Book Depot, 2016.
- 2. SyamalesDatta "Valuation of Real Property Principles & Practice", Eastern Law house private Limited, 2004.
- 3. Somers William A,"The Valuation of Real Estate for the Purpose of Taxation", Wentworth Press, 2019.

REFERENCES

- 1. Ashok Nain,"Professional Valuation Practice", Tata McGraw Hill Publishing Co. Ltd. 2009.
- 2. McElroy Ken," The ABCs of Real Estate Investing", RDA Press, 2010.
- 3. James H. Boykin & Alfred Ring, "The Valuation of Real Estate", Prentice Hall, 1992.

Т Р L Total 15 15 0 30

Guided

ding

fective

ResponseRespon

15

		GA1	GA2	GA3	GA4	GA5		GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1		2	1	1		2								
CO 2		2	2			1								
CO 3		2	2	1	2	2								
Total		6	5	2	2	5								
Scaled Value	16	3	3	1	1	3		0	0	1	0	0	1	2
Note:		Fotal	0		1-5		6-	10		11-15				
	Scaled v	value	0		1		,	2		3				
	Rela	ation	No		Low		Med	dium		High				

Sen	nestei	r	:											
Co	urse (Code	e :	XC	CEMO2									
	Course Name : DIGITAL LAND SURVEYING AND MAPPING													
Pre	erequi	isite	:	Nil	l									
	L	Т	P	С		С	P	Α		L	Т	Р	Η	
	0.5	0	0.5	1		0.50	0.25	0.25		1	0	1	2	

Course Objectives

At the end of the course the student will be able to

- To provide basics of digital surveying and mapping of earth surface using total station, GPS and mapping software.
- The course starts with introduction to land surveying followed by fundamentals of total station and its working & measurements for land surveying.
- Fundamentals, working & measurements using GPS for land surveying will be discussed.
- Followed by mapping fundamentals, digital surveying procedure, working, data reduction etc.
- Finally, the course will deals with working and demonstration of a digital land surveying and mapping of an area.

	e Outcome: After the completion of the course, students able to	Domain C or P or A	Level
CO1	Understand the importance of digital surveying and mapping of earth surface.	Cognitive	Understanding
CO2	Understand the importance of total station and its working & measurements for land surveying.	Cognitive	Understanding
CO3	Understand the importance of Fundamentals, working & measurements using GPS for land surveying.	Cognitive	Understanding
CO4	Learn some of the best management practices in, digital surveying procedure, working, data reduction etc.	Psychomotor Affective	Guided ResponseRespon ding
CO5	Understand the concepts of preparation of master demonstration of a digital land surveying and mapping of an area.	Psychomotor Affective	Guided ResponseRespon ding

COURSE CONTENT

FUNDAMENTALS OF LAND SURVEYING & GPS

10

10

Overview -Fundamentals -GPS and Land Surveys- CORS Networks - Practical Application /-Strengths -Weaknesses - Coping with Reality.

TOTAL STATION: Introduction to GPS - Spatial data. Total station survey – practice.

GEOGRAPHIC INFORMATION SYSTEM (GIS) REVELUTION:

Building a Foundation - Sources of Information-System Maintenance-Potential Users - Potential for Misapplication,

GEOMETRY

Plane Geometry - Land Point & Line - Straight Land Line -Plumb Line - Level -Land Distances - Elevation –Area- Horizontal Angles - Degrees, Minutes & Seconds- Maps

or Plats.

SURVEY APPLICATIONS

Traversing using various instruments, Contouring Characteristics, uses and methods Measurements of areas and volumes using different methods, setting out works buildings, curves, and Project surveys Highways, Railways and Waterways.

L	Т	Р	Total
15	0	15	30

TEXT BOOKS

- 1. A Text Book on GPS Surveying Paperback– December 28, 2015by **Dr. Jayanta Kumar Ghosh Ph.D.**
- 2. Robillard, W. G. and Bouman, Lane J. (1998). Clark on Surveying and Boundaries, Seventh Edition. Charlottesville, Va.: LEXIS Law Pub.
- 3. Paine, D.P. and J.D. Kiser. 2012. Aerial Photography and Image Interpretation. New York. John Wiley Inc.
- 4. Kiser, J.D. Surveying for Forestry and the Natural Resources. 2010. Corvallis, OR: John Bell and Assoc.

11 8													
	<u>C</u> A1	160	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3	5	2			2							2
CO 2	3	1	2			2							2
CO 3	3	5	2	1	2	2							2
CO 4	3	1	2	1	2	2							2
CO 5	3	1	2	1		2			1			2	2
Total	1:	5	10	3	4	10			1			2	10
Scaled Value	3		2	1	1	2	0	0	1	0	0	1	2
Note:	Tota	I	0		 1-5		6-10		11-15				

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semes Course	ter e Code	: : X	KCEM	03										
Cours	e Name	: (FENE	RAL RE	PAIRS	& REM	EDIAL	WAT	FERPR()OFI	NG			
Prerec			Vil							/01 II				
	L T	P	C		С	Р	A]		L	Т	P	H	
	.25 0	0.75	0		1	2	0			1	0	1	2	
Course Objectives														
At the end of the course the student will be able to														
• To gain the knowledge on repair mortars,														
• To understand the bonding agent and Injection System														
• 10	• To understand the Protective coating and anti carbonation													
Course Outcome: After the completion of the course, studentsDomainLevelwill be able toC or P or A														
CO1	Underst	tand the	morta	rs used fo	or repairs	3			Psycho	motor		Guide	ed Re	sponse
CO2				about bo	-		and inje	ction	Psycho	motor		Guide	ed Re	esponse
CO3	Learn tl	he prote	ctive c	oating					Cogniti	ve		Under	rstan	ding
COUR	RSE CO	NTEN'	Г											
	Re	epair M	ortars	5										2
				- Concre on joints				edges	& cracks	- Join	iting	of mas	sonry	Ϊ,
	Bo	onding	Agent	5										2
	Ol	ld-new o	concret	e applica	tions - E	xtensio	n or repa	ir of s	structural	concr	ete			
Injection System										4				
Defective concrete (cracks/honeycombs) - Concrete joints - Basement waterproofing - Drinking water tanks & reservoirs - Waste water tanks, sewers, manholes										-				
	Pr	otectiv	e coati	ng										2
	Со	oncrete/	steel su	urfaces -S	ewage t	reatmen	t plants							
	Aı	nti carb	onatio	on cum d	ecorativ	e coatin	ng							2
	R	CC wate	r tank	s - All coi	ncrete st	ructures	exposed	l to se	vere atm	ospher	ric co	onditio	ons	
	Weather-proof cum decorative coating2													
	۸1	1 ovtori	or cond	rete/mase	onry cur	faces								

All exterior concrete/masonry surfaces

L	Т	Р	Total
15	0	15	30

TEXT BOOKS

- 1. A Text Book on GPS Surveying Paperback– December 28, 2015by Dr. Jayanta Kumar Ghosh Ph.D.
- 2. Robillard, W. G. and Bouman, Lane J. (1998). Clark on Surveying and Boundaries, Seventh Edition. Charlottesville, Va.: LEXIS Law Pub.
- 3. Paine, D.P. and J.D. Kiser. 2012. Aerial Photography and Image Interpretation. New York. John Wiley Inc.
- 4. Kiser, J.D. Surveying for Forestry and the Natural Resources. 2010. Corvallis, OR: John Bell and Assoc.

11													-	-	-
		P01	P02	PO 3	PO 4	PO 5	9 Od	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1		1	2				1								1
CO 2		1	2				1								1
CO 3		1	2				1								1
CO 4															
CO 5															
Total		3	6	0	0	0	3	0	0	0	0	0	0	0	3
Scaled V	alue	1	2	0	0	0	1	0	0	0	0	0	0	0	1
Not	te:	ŗ	Total			1-:	5	6-1	0	11-	15				
		Scaled v	alue	0		1		2		3					
	Ī	Rela	ation	No)	Lo	w	Medi	um	Hig	gh				

Semester:Course Code:XCEMO4												
Course Name : BUILDING REGULATIONS AND APPROVAL PROCESS												
Prerequisite : Nil												
L T P C C P A												
1 0 0 0 1 1 0 0 1												
Course Objectives												
At the end of the course the student will be able to												
• Understanding the building rules and regulations.												
• Knowledge about building approval process.												
Course Outcome: After the completion of the course, studentsDomainLevelwill be able toC or P or A												
CO1 Prepare building plans according to rules and regulations. Cognitive Understanding												
Able to create documents for building approval. Cognitive Understanding												

CO3 Able to apply approval for building.

COURSE CONTENT

Building Regulations

Plan Requirements - Requirement for site approval - Structures in setback spaces - Spaces excluded from FSI and Coverage Computation - Area of special character - Boundaries of land use zones - Rules to override other Rules and Regulations - Planning Parameters for Buildings - Building Rules.

Respond

spond

UnderstandingRe

15

15

Total

30

Affective

Cognitive

Affective

L

30

Т

0

Р

0

Building Plan Approval

Application for Completion Certificate - Application for Planning Permission and Building Permit - Application procedure and documents required for building plan approval.

REFERENCES

- 1. National Building Code of India.
- 2. Tamil Nadu Combined Development and Building Rules.
- 3. http://www.tn.gov.in/tcp/building_plan.html

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	1	2				1								1
CO 2	1	2				1								1
CO 3	1	2				1								1
CO 4														
CO 5														
Total	3	6	0	0	0	3	0	0	0	0	0	0	0	3
Scaled Value	1	2	0	0	0	1	0	0	0	0	0	0	0	1
Note:	Total		0		1-:	5	6-1	0	11-	15				
	Scaled v	alue	0		1		2		3					
	Rela	ation	No)	Lo	W	Medi	um	Hig	gh				

Sen	nester		:											
Cou	urse Co	de	: XC	CEMO)5									
Course Name : COMPUTATIONAL SKILLS FOR GEOTECHNICAL APPLICATIONS														
Pre	Prerequisite : Nil													
	L	Т	Р	C		С	Р	Α		L	Т	Р	Η	

0.50

0.25

1

0

0

1

Course Objectives

0

0.25

At the end of the course the student will be able to

0

0.75

- To gain the knowledge on linear and non-linear equations,
- To understand and apply the finite difference and finite element method in geotech. engg.

0.25

• To evaluate the correlation and regression analysis

	Outcome: After the completion of the course, students able to	Domain C or P or A	Level
CO1	Solve linear and non-linear equations using numerical techniques.	CognitivePsych omotorAffectiv e	UnderstandingGu ided ResponseRespon ding
CO2	Apply finite difference and finite element method for analysing behaviour of geotechnical structures.	CognitivePsych omotorAffectiv e	UnderstandingGu ided ResponseRespon ding
CO3	Apply correlation and regression analysis for the geotechnical data.	CognitivePsych omotorAffectiv e	UnderstandingGu ided ResponseRespon ding

COURSE CONTENT

Solution of Non-linear Equations 3 Bisection, False Position, Newton-Raphson, Successive approximation method, Iterative methods 3 **Solution of Linear Equations** Jacobi's method, Gauss Seidal method, Successive over relaxation method. Finite Difference Method: Two point Boundary value problems - Disichlet conditions, Neumann conditions; ordinary and partial differential equations. **Correlation and Regression Analysis** 3 Correlation - Scatter diagram, Karl Pearson coefficient of correlation, Limits of correlation coefficient; Regression -Lines of regression, Regression curves, Regression coefficient, Differences between correlation and regression analysis. **One-dimensional Consolidation** 3 Theory of consolidation, Analytical procedures, Finite difference solution procedure for multilayered systems, Finite element formulation **Finite Element Method & Soil Modeling** 3 Introduction to basic constitutive soil models (Tresca, Von-Mises, Mohr-Coulomb, Drucker-Prager, Lade's Model), Application of Cam-Clay, Modified Drucker-Prager, and Lade's

Models for solving ta engineering problems.

	L	Т	Р	Total	
	7	0	8	15	
TEXT BOOKS					

1. S. Chandrakant., Desai and John T. Christian, "Numerical Methods in Geotechnical Engineering", Mc. Graw Hill Book Company, 1977.

- 2. M.K. Jain, S.R.K. Iyengar and R.K. Jain, "Numerical Methods for Scientific and Engineering computations", Third edition, New Age International (P) Ltd. Publishers, New Delhi.
- 3. D.J. Naylor and G.N. Pande, "Finite Elements in Geotechnical Engineering", Pineridge Press Ltd., UK. 4. Sam Helwany, "Applied soil mechanics", John Wiley & sons, Inc, USA
- 4. Sam Helwany, Applied Soil Mechanics with ABAQUS applications, John-Wiley and Sons Inc.

1.1.0	ppms o			-	~					-				-		
		P01	PO2		PO 3	PO 4	PO 5	9 Od	PO 7	PO 8	9 O	PO 10	PO 11	PO 12	PS01	PSO2
CO	1	2	2	,	1			1		1	1				1	1
CO	2	1	1			1			1			1	1			
CO	3	2	1				1	1								1
Tot	tal	5	4		1	1	1	2	1	1	1	1	1	0	1	2
Scal	led Value	1	1		1	1	1	1	1	1	1	1	1	0	1	1
	Note:		Tota	I	0		1-	5	6-1	0	11-	15				
		Scaled	value	•	0		1		2		3					

Low

Medium

High

Mapping of CO with PO's

Relation

No

Semester : Course Code :

: XCEMO6

Course Name : STRUCTURAL QUALITY ASSESSMENT

Prerequisite : Nil

L	Т	Р	С	С	Р	Α	L	Τ	Р	Η	
1	0	0	1	1	0	0	1	0	0	1	

Course Objectives

This course aims at providing

• An exposure to assess the quality of various structures

	e Outcome: After the completion of the course, students able to	Domain C or P or A	Level
CO1	Understand the types of distress in structures.	Cognitive	Understand
CO2	Analyse the reason for deterioration of structures	Cognitive	Analyse
CO3	Suggest the solution for affected structures.	Cognitive	Create

COURSE CONTENT

Maintenance, Repair and rehabilitation, Facets of Maintenance – Inspection – Quality15assessment of materials - Assessment procedure for Evaluating damaged structures -
Causes of deterioration - Techniques for repair and retrofitting.15

L	Т	Р	Total
15	0	0	15

TEXT BOOKS

- 1. Daniel Balageas, Claus-Peter Fritzen and Alfredo Guemes, Structural Health Monitoring, John Wiley & Sons, 2006.
- 2. Victor Giurgiutiu, Structural Health Monitoring with Piezoelectric wafer Active Sensors, Academic Press, 2008

REFERENCES

1. Rehabilitation of Concrete Structures, Dr.B.Vidivelli, Anubhav Publishers, 2009

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSOI	PSO2
CO 1	3	2	2			2	1	1		2	1	1	3	2
CO 2	2	3	2			2	1	1		1	2	1	2	2
CO 3	2	2	2			2	1	1		2		3	2	2
Total	7	7	6	0	0	6	3	3	0	5	3	5	7	6
Scaled Value	2	2	2	0	0	2	1	1	0	1	1	1	2	2
Note:		Fotal	0		1-:	5	6-1		11-					
	Scaled Rel	ation	0 No)	Lo	w	2 Med		3 Hig					

Seme	ester		:										
Cour	se Co	de	: XC	CEMC	7								
Cour	se Na	me	: PL	UMB	ING ANI	D SANIT	TARY I	NSTALL	ATIONS				
Prere	equisi	te	: Nil										
	L	Т	Р	С		С	P	А		L	Т	P	H
	1	0	0	1		0.25	0.75	0		1	0	0	1
Cour	se Ob	ojectiv	ves		-				-				
This c	course	aims a	at provid	ing									
٠	То g	gain th	e knowl	edge o	n pipe m	aterials							
•	Тοι	unders	tand the	conne	ction betw	ween the	fixtures						
•	Тοι	unders	tand the	Repa	r and Rec	condition	ing						
	se Ou pe able		e: After	the c	ompletion	n of the	course,	students	Dom C or F		A		Level
CO1	Un	dersta	nd the ty	pe of	materials	and joini	ing		Cognitiv Psychon				erstand ed Respo

Cognitive

Cognitive

Psychomotor

Understand

Create

Guided Response

Acquire knowledge water line and sanitary line installations

CO3 Learn the safety aspects

COURSE CONTENT

CO2

Pipe materials		3
ypes of Pipes- Pipe joints-Cutting Pipes in different angle. Joining of pipes diameter and angles by gas welding, thread cutting on different types fittings accessories. Bending of Pipes		
Water line Installations		3
Making of pipe line circuit for water distribution, fixing Cocks & valve, Watest, Water Pressure test	ater anal	ysis
Sanitary line Installations		3
Construction of inspection chamber, manhole, gutter, septic tank, socket etc drainage pipe, Removal of leakage pipe line	. Testin	g of
Repairing and Reconditioning		3
Repairing & reconditioning of waste pipe line, Repairing & reconditioning, painting of sanitary fittings	scrapin	g &
Safety Aspects		3
Safety aspects- OSH&E, PPE, Fire extinguisher, First Aid etc.		
	P	Total
5 0	10	15

TEXT BOOKS

- 1. Plumber Engineering Trade Manual, Ministry of skill development and Entrepreneurship,Directorate General of Training Central Staff Training and Research Institute, kolkata
- 2. Handbook on water supply and drainage (with special emphasis on plumbing) bureau of Indian Standards, New Delhi

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	1	2				1								1
CO 2	1	2				1								1
CO 3	1	2				1								1
Total	3	6	0	0	0	3	0	0	0	0	0	0	0	3
Scaled Value	1	2	0	0	0	1	0	0	0	0	0	0	0	1
Note:]	Fotal	0		1-:	5	6-1	10	11-	15				
	alue	0		1		2		3						
	Rela	ation	No)	Lo	W	Med	ium	Hig	gh				

Semes Cours Cours Preree	se Coo se Nai	me	• -		98 Y CAMP					
	L	T	•	С		С	Р	Α	LT	PH
0).25	0	0.75	1		0.25	0.75	0	1 0	0 1
Cours	se Ob	jectiv	ves							
This co	ourse a	aims a	t provid	ing						
٠		•			he study a					
•	•	-			-			he given a		T . J
			: After	the c	ompietio	n of the	course,	student		Level
will be	e able	to							C or P or A	
CO1	Prep	oare n	napping	and co	ontour are	a			Cognitive	Understand
	-								Psychomotor	Guided Response
CO2	Prep	pare ra	adial coi	ntourii	ng				Cognitive	Understand
CO3	100	uiro l	mowlad	an on	total aury	av station			Psychomotor	Guided Response Understand
CO3		•		ge on	total surv	ey station	1		Cognitive	Unuelstanu
COUI	RSE (CON	TENT							

15

Survey camp using Theodolite, cross staff, levelling staff, tapes, and total station. The camp record shall include all original field observations, calculations and plots.

Triangulation - Trilateration - LS and CS Contouring - Radial Contouring

L	Т	Р	Total
5	0	10	15

REFERENCES

- 1. Clark D., Plane and Geodetic Surveying, Vols. I and II, C.B.S. Publishers and Distributors, Delhi, Sixth Edition, 2004.
- 2. James M.Anderson and Edward M.Mikhail, Introduction to Surveying, McGraw-Hill Book Company, 1985.
- 3. Wolf P.R., Elements of Photogrammetry, McGraw-Hill Book Company, Second Edition, 2009.

	P01	P02	PO 3	PO 4	PO 5	9 Od	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	1	2				1								1
CO 2	1	2				1								1
CO 3	1	2				1								1
Total	3	6	0	0	0	3	0	0	0	0	0	0	0	3
Scaled Value	1	2	0	0	0	1	0	0	0	0	0	0	0	1
Note:] Scaled y	fotal	0		1-:	5	6-1	-	11-					

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semest	ter		:										
Course	e Co	de	:	XCE	0E1								
Course	Na	me	:	REM	IOTE SENSI	NG AND	GIS						
Prereq	uis	ite	:	Nil									
	L	Т	Р	C		С	Р	Α		L	Т	Р	Η
	3	0	0	3		2.5	0.5	0		3	0	0	3
Cour		-							-				

- To give information about overview of Remote Sensing
- To understand basics of consept of Geo Information System
- To know the application of Remote sensing and GIS in the field of Environmental Engineering

	e Outcome: After the completion of the course, students able to	Domain C or P or A	Level
C01	Apply the concepts of Electro Magnetic energy, spectrum and spectral signature curves in the practical problems	Cognitive	Understand
CO2	Apply the concepts of satellite and sensor parameters and characteristics of different platforms	Cognitive	Understand
CO3	Apply the concepts of DBMS in GIS	Cognitive	Understand
CO4	Analyse raster and vector data and modelling in GIS	Cognitive Psychomotor	Understand Response
CO5	Apply GIS in land use, disaster management, ITS and resource information system	Cognitive	Understand

COURSE CONTENT

UNIT I EMR AND ITS INTERACTION WITH ATMOSPHERE & EARTH MATERIAL

Definition of remote sensing and its components – Electromagnetic spectrum – wavelength regions important to remote sensing – Wave theory, Particle theory, Stefan-Boltzman and Wein's Displacement Law – Atmospheric scattering, absorption –Atmospheric windows – spectral signature concepts – typical spectral reflective characteristics of water, vegetation and soil.

UNIT II PLATFORMS AND SENSORS

Types of platforms – orbit types, Sun-synchronous and Geosynchronous – Passive and Active sensors – resolution concept – Pay load description of important Earth Resources and Meteorological satellites – Airborne and spaceborne TIR and microwave sensors

UNIT III IMAGE INTERPRETATION AND ANALYSIS

Types of Data Products – types of image interpretation – basic elements of image interpretation - visual interpretation keys – Digital Image Processing – Preprocessing – image enhancement techniques – multispectral image classification – Supervised and unsupervised.

UNIT IV GEOGRAPHIC INFORMATION SYSTEM

Introduction – Maps – Definitions – Map projections – types of map projections – map analysis – GIS definition – basic components of GIS – standard GIS software – Data type – Spatial and non-spatial (attribute) data – measurement scales – Data Base Management Systems (DBMS). 9

9

9

UNIT V DATA ENTRY, STORAGE AND ANALYSIS

Relation

No

Data models - vector and raster data - data compression - data input by digitization and scanning - attribute data analysis - integrated data analysis -Modeling in GIS Highway alignment studies - Land Information System

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Ian Heywood "An Introduction to GIS", Pearson Education, Asia, 2000.
- 2. Lo.C.P and A.K.W.Yeung, "Concepts and Techniques of Geographic InformationSystems", Prentice Hall of India Pvt. Ltd., New Delhi, 2002.

REFERENCES

- 1. Burrough P.A. and Rachel A. McDonell, Principles of Geographical InformationSystems, Oxford Publication, 2004.
- 2. C.P.Lo and Albert K.W.Yeung, Concepts and Techniques of Geographical InformationSystems, Prentice Hall India, 2006.
- 3. Thomas. M. Lille sand and Ralph. W. Kiefer, Remote Sensing and Image Interpretation, John Wiley and Sons, 2003.

Mapping o	of CC) with GA	A's											
		GA1	GA2	GA3	GA4	GA5	GA6	000	GA7	GA8	GA9	GA10	GA11	GA12
CO 1		1	2		1	1			1		1			
CO 2			2		2							1	1	1
CO 3		1	1	2			1			1				
CO 4						1					1			1
CO 5			1		1				1				1	
Total		2	6	2	4	2	1	-	2	1	2	1	2	2
Scaled Valu	le	1	2	1	1	1	1	-	1	1	1	1	1	1
Note	:		Total	0		1-5			6-10	1	1-15			
		Scaled	value	0		1			2		3			

Low

Medium

High

Semester : Course Code : XCE OE 2

Course Name : BUILDING SERVICES Prerequisite : Nil

L	Т	Р	С	С	Р	Α	L	Т	Р	Η	
3	0	0	3	2.5	0	0.5	3	0	0	3	1

Course Objectives

- To give information about water supply source, treatment and distribution.
- To inform about the principles of illumination in buildings.
- To know fire protection in building

	e Outcome: After the completion of the course, students able to	Domain C or P or A	Level
CO1	Understanding the concepts of various water harvesting systems and water supply facility	Cognitive Affective	Understand Respond
CO2	Identify and understand the elements of electrical systems	Cognitive	Understand
CO3	Have a good understanding of importance of building ventilation and HVAC systems	Cognitive	Understand
CO4	Classify suitable fire safety procedures for different types of buildings	Cognitive	Understand
CO5	Have a keen knowledge on essentials of performance and functioning of intelligent buildings	Cognitive	Understand

COURSE CONTENT

UNIT I WATER SUPPLY SYSTEMS

Water quality, Purification and treatment- water supply systems-distribution systems in small towns. Rain Water Harvesting - Sanitation in buildings-arrangement of sewerage systems in housing Storm water drainage from buildings -septic and sewage treatment plant – collection, conveyance and disposal of town refuse systems.

9

9

9

UNIT II PRINCIPLES OF ILLUMINATION AND DESIGN

Visual tasks – Factors affecting visual tasks – Modern theory of light and colour – Synthesis of light – Additive and subtractive synthesis of colour – Luminous flux – Candela – Solid angle illumination – Utilisation factor – Depreciation factor – MSCP – MHCP – Lans of illumination – Classification of lighting – Artificial light sources – Spectral energy distribution – Luminous efficiency – Colour temperature – Colour rendering.

UNIT III VENTILATION AND ITS IMPORTANCE

Ventilation and its importance-natural and artificial systems-Window type and packaged air-conditioners-chilled water plant –fan coil systems-water piping –cooling load –air conditioning systems for different types of buildings –protection against fire to be caused by A.C.Systems.

UNIT IV SAFETY REGULATIONS

Causes of fire in buildings-safety regulations-NBC-planning considerations in buildings like Non-combustible materials, construction, staircases and A.C. systems, special features required for physically handicapped and elderly in building types-heat and smoke detectors-dry and wet risers- Automatic sprinklers.

UNIT V INTELLIGENT BUILDINGS

Intelligent buildings-Building automation-Smart buildings- Building services in high rise buildings-Green buildings-Energy efficient buildings for various zones-Case studies of residence, office buildings and other buildings.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Wendell C. Edwards, "Building Systems: Mechanical, Electrical, Plumbing, Fire Safety and Communication Systems", Linus Publications, Incorporated, 2009
- 2. Carson Dunlop, "Air Conditioning and Heat Pumps Essentials of Home Inspection", Dearborn Real Estate, 2003.
- 3. Roger Greeno and Fred Hall, "Building Services Handbook", Routledge, 2015
- 4. Derek Phillips, "Lighting Modern Buildings", Taylor & Francis, 2013.
- 5. Ross Montgomery, Robert McDowall, "Fundamentals of HVAC Control Systems", Elsevier, 2008

REFERENCES

- 1. Nagarajan. K, "Project Management", New age international (P) Ltd, Publishers, 2005
- 2. William H.Severns and Julian R. Fellows, "Air-conditioning and Refrigeration", John Wiley and Sons, London, 2000.
- 3. National Building Code.

	FO		<u> </u>								<u> </u>				
		GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12		
CO 1				1											
CO 2															
CO 3		1			3		1								
CO 4									1						
CO 5		1				2					1	1	1		
Total		2	0	1	3	2	1	0	1	0	1	1	1		
Scaled	Value	1	0	1	1	2	1	0	1	0	0	1	1		
	Note:	Total	0		1-5		6-10		11-15						
		Scaled value	0		1		2		3						
		Relation	N	0	Low	V	Mediu	m	High						

Mapping of CO with GA's

9

Semes Cours		e	X	CEOE3									
Cours Prerec			: M : N	IETRO SYSTI (il	EMS AN	ND ENG	GINEEH	RING					
L	Т	Р	С		С	Р	Α		L	Τ	P	Η	
3	0	0	3	1	3	0	0		3	0	0	3	
Cours	01.			1				1					

Course Objectives

- To give information about overview of metro systems.ion
- To understand basics of construction planning & management, construction quality & safety systems
- To know the air conditioning, ventilation, electronic signaling systems and Automatic fare collection

	Outcome: After the completion of the course, students able to	Domain C or P or A	Level
CO1	Understanding the concepts of metro systems	Cognitive	Understand
CO2	Have a good understanding of construction methods for various civil engineering structures used in metro systems	Cognitive	Understand
CO3	Knonwledge on application of electronic signaling systems and automatic fare collection	Cognitive	Understand
CO4	Able to understanding of airconditioning for stations and buildings	Cognitive	Understand
CO5	Have a keen knowledge on essentials of performance and functioning of green buildings	Cognitive	Understand

COURSE CONTENT

UNIT I	GENERAL
--------	---------

Overview of Metro Systems; Need for Metros; Routing studies; Basic Planning and Financials

6

12

UNIT II CIVIL ENGINEERING

Overview and construction methods for: Elevated and underground Stations; Viaduct spans and bridges; Underground tunnels; Depots; Commercial and Service buildings. Initial Surveys & Investigations; Basics of Construction Planning & Management, Construction Quality & Safety Systems. Traffic integration, multimodal transfers and pedestrian facilities; Environmental and social safeguards; Track systems-permanent way. Facilities Management

1	UNIT III	ELECTRONICS AND COMMUNICATION ENGINEERING	9
		Signaling systems; Automatic fare collection; Operation Control Centre (OCC and	
		BCC); SCADA and other control systems; Platform Screen Doors.	
l	UNIT IV	MECHANICAL & TV + AC:	9

Rolling stock, vehicle dynamics and structure; Tunnel Ventilation systems; Air conditioning for stations and buildings; Fire control systems; Lifts and Escalators

UNIT V ELECTRICAL

OHE, Traction Power; Substations- TSS and ASS; Power SCADA; Standby and Backup systems; Green buildings, Carbon credits and clear air mechanics

L T P Total 45 0 0 45

TEXT BOOKS

- 1. Konstadinos G.Goulias, "Transportion Systems Planning; Methods and applications", CRC Press, 2003
- 2. Carson Dunlop, "Air Conditioning and Heat Pumps Essentials of Home Inspection", Dearborn Real Estate, 2003.
- 3. Roger Greeno and Fred Hall, "Building Services Handbook", Routledge, 2015

REFERENCES

- 1. Vukan R. Vuchic, Urban Transist", Operations, Planning and Economics, John Wiley & Sons, 2005
- 2. William H.Severns and Julian R. Fellows, "Air-conditioning and Refrigeration", John Wiley and Sons, London, 2000.
- 3. National Building Code.

11													
		GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1				1									
CO 2													
CO 3		1			3		1						
CO 4									1				
CO 5		1				2					1	1	1
Total		2	0	1	3	2	1	0	1	0	1	1	1
Scaled Value		1	0	1	1	2	1	0	1	0	0	1	1
ľ	Note:	Total	Total 0		1-5		6-10		11-15				
		Scaled value	0		1		2		3				
		Relation	No		Low		Medium		High				